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FROM THE PREFACE TO THE FIRST
ENGLISH EDITION

THE present book is one of the series on Theoretical Physics, in which
we endeavour to give an up-to-date account of various departments of that
science. The complete series will contain the following nine volumes:

1. Mechanics.

2. The classical theory of fields.

3. Quantum mechanics (non-relativistic theory).

4. Relativistic quantum theory.

5. Statistical physics.

6. Fluid mechanics.

7. Theory of elasticity.

8. Electrodynamics of continuous media.

9. Physical kinetics.

Of these, volumes 4 and 9 remain to be written.
The scope of modern theoretical physics is very wide, and we have, of

course, made no attempt to discuss in these books all that is now included in
the subject. One of the principles which guided our choice of material was not
to deal with those topics which could not properly be expounded without at
the same time giving a detailed account of the existing experimental results.
For this reason the greater part of nuclear physics, for example, lies outside
the scope of these books. Another principle of selection was not to discuss
very complicated applications of the theory. Both these criteria are, of course,
to some extent subjective.

We have tried to deal as fully as possible with those topics that are
included. For this reason we do not, as a rule, give references to the original
papers, but simply name their authors. We give bibliographical references
only to work which contains matters not fully expounded by us, which by
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viii . FROM THE PREFACE TO THE FIRST ENGLISH EDITION

their complexity lie “on the borderline” as regards selection or rejection.
We have tried also to indicate sources of material which might be of use
for reference. Even with these limitations, however, the bibliography given
makes no pretence of being exhaustive.

We attempt to discuss general topics in such a way that the physical
significance of the theory is exhibited as clearly as possible, and then to build
up the mathematical formalism. In doing so, we do not aim at “mathematical
rigour” of exposition, which in theoretical physics often amounts to self-
deception.

The present volume is devoted to non-relativistic quantum mechanics.
By “relativistic theory” we here mean, in the widest sense, the theory of
all quantum phenomena which significantly depend on the velocity of light.
The volume on this subject (volume 4) will therefore contain not only Dirac’s
relativistic theory and what is now known as quantum electrodynamics, but
also the whole of the quantum theory of radiation.

L.D. LANDAU and E.M. LIFSHITZ, Institute of Physical Problems, USSR
Academy of Sciences
August 1956



PREFACE TO THE SECOND ENGLISH
EDITION

FOR this second edition the book has been considerably revised and
enlarged, but the general plan and style remain as before. Every chapter has
been revised. In particular, extensive changes have been made in the sections
dealing with the theory of the addition of angular momenta and with collision
theory. A new chapter on nuclear structure has been added; in accordance
with the general plan of the course, the subjects in question are discussed
only to the extent that is proper without an accompanying detailed analysis
of the experimental results.

We should like to express our thanks to all our many colleagues whose
comments have been utilized in the revision of the book. Numerous com-
ments were received from V. L. Ginzburg and Ya. A. Smorodinskii. We are
especially grateful to L. P. Pitaevskii for the great help which he has given
in checking the formulae and the problems.

Our sincere thanks are due to Dr. Sykes and Dr. Bell, who not only
translated excellently both the first and the second edition of the book, but
also made a number of useful comments and assisted in the detection of
various misprints in the first edition.

Finally, we are grateful to the Pergamon Press, which always acceded to
our requests during the production of the book.

L.D. LANDAU and E.M. LIFSHITZ
October 1964
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PREFACE TO THE THIRD RUSSIAN
EDITION

THE previous edition of this volume was the last book on which I worked
together with my teacher L. D. Landau. The revision and expansion that we
then carried out was very considerable, and affected every chapter.

For the third edition, naturally, much less revision was needed. Never-
theless, a fair amount of new material has been added, including some more
problems, and relating both to recent research and to earlier results that have
now become of greater significance.

Landau’s astonishing grasp of theoretical physics often enabled him to
dispense with any consultation of original papers: he was able to derive
results by methods of his own choice. This may have been the reason why
our book did not contain certain necessary references to other authors. In the
present edition, I have tried to supply them as far as possible. I have also
added references to the work of Landau himself where we describe results
or methods that are due to him personally and have not been published
elsewhere.

As when dealing with the revision of other volumes in the Course of
Theoretical Physics, I have had the assistance of numerous colleagues who
informed me either of deficiencies in the treatment given previously, or of new
material that should be added. Many useful suggestions incorporated in this
book have come from A. M. Brodskii, G. F. Drukarev, I. G. Kaplan, V. P.
Krainov, I. B. Levinson, P. E. Nemirovskii, V. L. Pokrovskii, I. I. Sobel’man,
and I. S. Shapiro. My sincere thanks are due to all of these.

The whole of the work on revising this volume has been done in close
collaboration with L. P. Pitaevskii. In him I have had the good fortune to
find a fellow-worker who has passed likewise through the school of Landau
and is inspired by the same ideals in the service of science.

E.M. LIFSHITZ, Moscow
November 1973
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EDITOR’S PREFACE TO THE FOURTH
RUSSIAN EDITION

IN this edition of Quantum Mechanics some misprints and errors noted
since the publication of the third edition have been corrected. Some small
improvements have also been made, and several problems have been added.

I am grateful to all readers who have provided me with comments.

L.P. PITAEVSKI, May 1988
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NOTATION

• Operators are denoted by a circumflex: f̂

• dV volume element in coordinate space

• dq element in configuration space

• d3p element in momentum space

• fnm = fmn = ⟨n|f |m⟩ matrix elements of the quantity f (see definition
in §11)

• ωnm = (EnEm)/ℏ transition frequency

•
{
f̂ , ĝ
}
= f̂ ĝ − ĝf̂ commutator of two operators

• Ĥ Hamiltonian

• δl phase shifts of wave functions

• Atomic and Coulomb units (see beginning of §36)

• Vector and tensor indices are denoted by Latin letters i, k, l

• eikl antisymmetric unit tensor (see §26)

• References to other volumes in the Course of Theoretical Phyncs:

– Mechanics = Vol. 1 (Mechanics, third English edition, 1976).
– Fields = Vol. 2 (The Classical Theory of Fields, fourth English

edition, 1975).
– RQT or Relativistic Quantum Theory = Vol. 4 (Relativistic Quan-

tum Theory, first English edition, Part 1, 1971; Part 2, 1974); the
second English edition appeared in one volume as Quantum Elec-
trodynamics, 1982.

All are published by Pergamon Press.
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CHAPTER I

THE BASIC CONCEPTS OF QUANTUM
MECHANICS

§ 1. The uncertainty principle

When we attempt to apply classical mechanics and electrodynamics to
explain atomic phenomena, they lead to results which are in obvious conflict
with experiment. This is very clearly seen from the contradiction obtained
on applying ordinary electrodynamics to a model of an atom in which the
electrons move round the nucleus in classical orbits. During such motion,
as in any accelerated motion of charges, the electrons would have to emit
electromagnetic waves continually. By this emission, the electrons would lose
their energy, and this would eventually cause them to fall into the nucleus.
Thus, according to classical electrodynamics, the atom would be unstable,
which does not at all agree with reality.

This marked contradiction between theory and experiment indicates that
the construction of a theory applicable to atomic phenomena—that is, phe-
nomena occurring in particles of very small mass at very small distances—
demands a fundamental modification of the basic physical concepts and laws.

As a starting-point for an investigation of these modifications, it is con-
venient to take the experimentally observed phenomenon known as electron
diffraction.1) It is found that, when a homogeneous beam of electrons passes
through a crystal, the emergent beam exhibits a pattern of alternate maxima
and minima of intensity, wholly similar to the diffraction pattern observed in
the diffraction of electromagnetic waves. Thus, under certain conditions, the
behaviour of material particles—in this case, the electrons—displays features
belonging to wave processes.

1) The phenomenon of electron diffraction was in fact discovered after quantum mechan-
ics was invented. In our discussion, however, we shall not adhere to the historical sequence
of development of the theory, but shall endeavour to construct it in such a way that the
connection between the basic principles of quantum mechanics and the experimentally
observed phenomena is most clearly shown.

1



2 THE UNCERTAINTY PRINCIPLE § 1

How markedly this phenomenon contradicts the usual ideas of motion is
best seen from the following imaginary experiment, an idealization of the
experiment of electron diffraction by a crystal. Let us imagine a screen im-
permeable to electrons, in which two slits are cut. On observing the passage
of a beam of electrons2) through one of the slits, the other being covered,
we obtain, on a continuous screen placed behind the slit, some pattern of
intensity distribution; in the same way, by uncovering the second slit and
covering the first, we obtain another pattern. On observing the passage of
the beam through both slits, we should expect, on the basis of ordinary clas-
sical ideas, a pattern which is a simple superposition of the other two: each
electron, moving in its path, passes through one of the slits and has no effect
on the electrons passing through the other slit. The phenomenon of electron
diffraction shows, however, that in reality we obtain a diffraction pattern
which, owing to interference, does not at all correspond to the sum of the
patterns given by each slit separately. It is clear that this result can in no
way be reconciled with the idea that electrons move in paths.

Thus the mechanics which governs atomic phenomena—quantum me-
chanics or wave mechanics—must be based on ideas of motion which are
fundamentally different from those of classical mechanics. In quantum me-
chanics there is no such concept as the path of a particle. This forms the
content of what is called the uncertainty principle, one of the fundamental
principles of quantum mechanics, discovered by W. Heisenberg in 1927.3)

In that it rejects the ordinary ideas of classical mechanics, the uncertainty
principle might be said to be negative in content. Of course, this principle
in itself does not suffice as a basis on which to construct a new mechanics
of particles. Such a theory must naturally be founded on some positive
assertions, which we shall discuss below (§2). However, in order to formulate
these assertions, we must first ascertain the statement of the problems which
confront quantum mechanics. To do so, we first examine the special nature
of the interrelation between quantum mechanics and classical mechanics.
A more general theory can usually be formulated in a logically complete
manner, independently of a less general theory which forms a limiting case
of it. Thus, relativistic mechanics can be constructed on the basis of its own
fundamental principles, without any reference to Newtonian mechanics. It is
in principle impossible, however, to formulate the basic concepts of quantum

2) The beam is supposed so rarefied that the interaction of the particles in it plays no
part.

3) It is of interest to note that the complete mathematical formalism of quantum me-
chanics was constructed by W. Heisenberg and E. Schrödinger in 1925–6, before the dis-
covery of the uncertainty principle, which revealed the physical content of this formalism.
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mechanics without using classical mechanics. The fact that an electron4)
has no definite path means that it has also, in itself, no other dynamical
characteristics5) . Hence it is clear that, for a system composed only of
quantum objects, it would be entirely impossible to construct any logically
independent mechanics. The possibility of a quantitative description of the
motion of an electron requires the presence also of physical objects which
obey classical mechanics to a sufficient degree of accuracy. If an electron
interacts with such a “classical object”, the state of the latter is, generally
speaking, altered. The nature and magnitude of this change depend on the
state of the electron, and therefore may serve to characterize it quantitatively.

In this connection the “classical object” is usually called apparatus, and its
interaction with the electron is spoken of as measurement. However, it must
be emphasized that we are here not discussing a process of measurement
in which the physicist-observer takes part. By measurement, in quantum
mechanics, we understand any process of interaction between classical and
quantum objects, occurring apart from and independently of any observer.
The importance of the concept of measurement in quantum mechanics was
elucidated by N. Bohr.

We have defined “apparatus” as a physical object which is governed, with
sufficient accuracy, by classical mechanics. Such, for instance, is a body of
large enough mass. However, it must not be supposed that apparatus is
necessarily macroscopic. Under certain conditions, the part of apparatus
may also be taken by an object which is microscopic, since the idea of “with
sufficient accuracy” depends on the actual problem proposed. Thus, the
motion of an electron in a Wilson chamber is observed by means of the
cloudy track which it leaves, and the thickness of this is large compared with
atomic dimensions; when the path is determined with such low accuracy, the
electron is an entirely classical object.

Thus quantum mechanics occupies a very unusual place among physical
theories: it contains classical mechanics as a limiting case, yet at the same
time it requires this limiting case for its own formulation.

We may now formulate the problem of quantum mechanics. A typical
problem consists in predicting the result of a subsequent measurement from
the known results of previous measurements. Moreover, we shall see later
that, in comparison with classical mechanics, quantum mechanics, generally
speaking, restricts the range of values which can be taken by various physical

4) In this and the following sections we shall, for brevity, speak of “an electron”, meaning
in general any object of a quantum nature, i.e. a particle or system of particles obeying
quantum mechanics and not classical mechanics.

5) We refer to quantities which characterize the motion of the electron, and not to those,
such as the charge and the mass, which relate to it as a particle; these are parameters.
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quantities (for example, energy): that is, the values which can be obtained
as a result of measuring the quantity concerned. The methods of quantum
mechanics must enable us to determine these admissible values.

The measuring process has in quantum mechanics a very important prop-
erty: it always affects the electron subjected to it, and it is in principle
impossible to make its effect arbitrarily small, for a given accuracy of mea-
surement. The more exact the measurement, the stronger the effect exerted
by it, and only in measurements of very low accuracy can the effect on the
measured object be small. This property of measurements is logically related
to the fact that the dynamical characteristics of the electron appear only as a
result of the measurement itself. It is clear that, if the effect of the measuring
process on the object of it could be made arbitrarily small, this would mean
that the measured quantity has in itself a definite value independent of the
measurement.

Among the various kinds of measurement, the measurement of the co-
ordinates of the electron plays a fundamental part. Within the limits of
applicability of quantum mechanics, a measurement of the coordinates of an
electron can always be performed6) with any desired accuracy.

Let us suppose that, at definite time intervals ∆t, successive measure-
ments of the coordinates of an electron are made. The results will not in
general lie on a smooth curve. On the contrary, the more accurately the
measurements are made, the more discontinuous and disorderly will be the
variation of their results, in accordance with the non-existence of a path of
the electron. A fairly smooth path is obtained only if the coordinates of the
electron are measured with a low degree of accuracy, as for instance from the
condensation of vapour droplets in a Wilson chamber.

If now, leaving the accuracy of the measurements unchanged, we dimin-
ish the intervals ∆t between measurements, then adjacent measurements, of
course, give neighbouring values of the coordinates. However, the results of a
series of successive measurements, though they lie in a small region of space,
will be distributed in this region in a wholly irregular manner, lying on no
smooth curve. In particular, as ∆t tends to zero, the results of adjacent
measurements by no means tend to lie on one straight line.

This circumstance shows that, in quantum mechanics, there is no such
concept as the velocity of a particle in the classical sense of the word, i.e. the
limit to which the difference of the coordinates at two instants, divided by
the interval ∆t between these instants, tends as ∆t tends to zero. However,

6) Once again we emphasize that, in speaking of “performing a measurement”, we refer
to the interaction of an electron with a classical “apparatus”, which in no way presupposes
the presence of an external observer.
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we shall see later that in quantum mechanics, nevertheless, a reasonable def-
inition of the velocity of a particle at a given instant can be constructed, and
this velocity passes into the classical velocity as we pass to classical mechan-
ics. But whereas in classical mechanics a particle has definite coordinates
and velocity at any given instant, in quantum mechanics the situation is en-
tirely different. If, as a result of measurement, the electron is found to have
definite coordinates, then it has no definite velocity whatever. Conversely,
if the electron has a definite velocity, it cannot have a definite position in
space. For the simultaneous existence of the coordinates and velocity would
mean the existence of a definite path, which the electron has not. Thus, in
quantum mechanics, the coordinates and velocity of an electron are quan-
tities which cannot be simultaneously measured exactly, i.e. they cannot
simultaneously have definite values. We may say that the coordinates and
velocity of the electron are quantities which do not exist simultaneously. In
what follows we shall derive the quantitative relation which determines the
possibility of an inexact measurement of the coordinates and velocity at the
same instant.

A complete description of the state of a physical system in classical me-
chanics is effected by stating all its coordinates and velocities at a given
instant; with these initial data, the equations of motion completely deter-
mine the behaviour of the system at all subsequent instants. In quantum
mechanics such a description is in principle impossible, since the coordinates
and the corresponding velocities cannot exist simultaneously. Thus a de-
scription of the state of a quantum system is effected by means of a smaller
number of quantities than in classical mechanics, i.e. it is less detailed than
a classical description.

A very important consequence follows from this regarding the nature of
the predictions made in quantum mechanics. Whereas a classical description
suffices to predict the future motion of a mechanical system with complete
accuracy, the less detailed description given in quantum mechanics evidently
cannot be enough to do this. This means that, even if an electron is in a
state described in the most complete manner possible in quantum mechanics,
its behaviour at subsequent instants is still in principle uncertain. Hence
quantum mechanics cannot make completely definite predictions concerning
the future behaviour of the electron. For a given initial state of the electron,
a subsequent measurement can give various results. The problem in quantum
mechanics consists in determining the probability of obtaining various results
on performing this measurement. It is understood, of course, that in some
cases the probability of a given result of measurement may be equal to unity,
i.e. certainty, so that the result of that measurement is unique.

All measuring processes in quantum mechanics may be divided into two
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classes. In one, which contains the majority of measurements, we find those
which do not, in any state of the system, lead with certainty to a unique
result. The other class contains measurements such that for every possible
result of measurement there is a state in which the measurement leads with
certainty to that result. These latter measurements, which may be called
predictable, play an important part in quantum mechanics. The quantitative
characteristics of a state which are determined by such measurements are
what are called physical quantities in quantum mechanics. If in some state a
measurement gives with certainty a unique result, we shall say that in this
state the corresponding physical quantity has a definite value. In future we
shall always understand the expression “physical quantity” in the sense given
here.

We shall often find in what follows that by no means every set of physical
quantities in quantum mechanics can be measured simultaneously, i.e. can
all have definite values at the same time. We have already mentioned one
example, namely the velocity and coordinates of an electron. An important
part is played in quantum mechanics by sets of physical quantities having
the following property: these quantities can be measured simultaneously, but
if they simultaneously have definite values, no other physical quantity (not
being a function of these) can have a definite value in that state. We shall
speak of such sets of physical quantities as complete sets.

Any description of the state of an electron arises as a result of some mea-
surement. We shall now formulate the meaning of a complete description of
a state in quantum mechanics. Completely described states occur as a result
of the simultaneous measurement of a complete set of physical quantities.
From the results of such a measurement we can, in particular, determine the
probability of various results of any subsequent measurement, regardless of
the history of the electron prior to the first measurement.

From now on (except in §14) we shall understand by the states of a
quantum system just these completely described states.

§ 2. The principle of superposition

The radical change in the physical concepts of motion in quantum me-
chanics as compared with classical mechanics demands, of course, an equally
radical change in the mathematical formalism of the theory. We must there-
fore consider first of all the way in which states are described in quantum
mechanics.

We shall denote by q the set of coordinates of a quantum system, and by
dq the product of the differentials of these coordinates. This dq is called an
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element of volume in the configuration space of the system; for one particle,
dq coincides with an element of volume dV in ordinary space.

The basis of the mathematical formalism of quantum mechanics lies in
the proposition that the state of a system can be described by a definite
(in general complex) function Ψ(q) of the coordinates. The square of the
modulus of this function determines the probability distribution of the values
of the coordinates: |Ψ|2dq is the probability that a measurement performed
on the system will find the values of the coordinates to be in the element
dq of configuration space. The function Ψ is called the wave function of the
system.7)

A knowledge of the wave function allows us, in principle, to calculate
the probability of the various results of any measurement (not necessarily of
the coordinates) also. All these probabilities are determined by expressions
bilinear in Ψ and Ψ∗. The most general form of such an expression is∫∫

Ψ(q)Ψ∗(q′)φ(q, q′)dqdq′, (2.1)

where the function φ(q, q) depends on the nature and the result of the mea-
surement, and the integration is extended over all configuration space. The
probability ΨΨ∗ of various values of the coordinates is itself an expression of
this type.8)

The state of the system, and with it the wave function, in general varies
with time. In this sense the wave function can be regarded as a function of
time also. If the wave function is known at some initial instant, then, from
the very meaning of the concept of complete description of a state, it is in
principle determined at every succeeding instant. The actual dependence of
the wave function on time is determined by equations which will be derived
later.

The sum of the probabilities of all possible values of the coordinates of
the system must, by definition, be equal to unity. It is therefore necessary
that the result of integrating |Ψ|2 over all configuration space should be equal
to unity: ∫

|Ψ|2dq = 1. (2.2)

This equation is what is called the normalization condition for wave func-
tions. If the integral of |Ψ|2 converges, then by choosing an appropriate

7) It was first introduced into quantum mechanics by Schrödinger in 1926.
8) It is obtained from (2.1) when φ(q, q) = δ(q− q0)δ(q− q0), where δ denotes the delta

function, defined in §5 below; q0 denotes the value of the coordinates whose probability is
required.
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constant coefficient the function Ψ can always be, as we say, normalized.
However, we shall see later that the integral of |Ψ|2 may diverge, and then Ψ
cannot be normalized by the condition (2.2). In such cases |Ψ|2 does not, of
course, determine the absolute values of the probability of the coordinates,
but the ratio of the values of |Ψ|2 at two different points of configuration
space determines the relative probability of the corresponding values of the
coordinates.

Since all quantities calculated by means of the wave function, and having a
direct physical meaning, are of the form (2.1), in which Ψ appears multiplied
by Ψ∗, it is clear that the normalized wave function is determined only to
within a constant phase factor of the form eiα (where α is any real number).
This indeterminacy is in principle irremovable; it is, however, unimportant,
since it has no effect upon any physical results.

The positive content of quantum mechanics is founded on a series of
propositions concerning the properties of the wave function. These are as
follows.

Suppose that, in a state with wave function Ψ1(q), some measurement
leads with certainty to a definite result (result 1), while in a state with Ψ2(q)
it leads to result 2. Then it is assumed that every linear combination of
Ψ1 and Ψ2, i.e. every function of the form c1Ψ1(q) + c2Ψ2(q) (where c1 and
c1 are constants), gives a state in which that measurement leads to either
result 1 or result 2. Moreover, we can assert that, if we know the time
dependence of the states, which for the one case is given by the function
Ψ1(q, t), and for the other by Ψ2(q, t), then any linear combination also gives
a possible dependence of a state on time. These propositions constitute what
is called the principle of superposition of states, the chief positive principle
of quantum mechanics. In particular, it follows from this principle that all
equations satisfied by wave functions must be linear in Ψ.

Let us consider a system composed of two parts, and suppose that the
state of this system is given in such a way that each of its parts is completely
described.9) Then we can say that the probabilities of the coordinates q1 of
the first part are independent of the probabilities of the coordinates q2 of the
second part, and therefore the probability distribution for the whole system
should be equal to the product of the probabilities of its parts. This means
that the wave function Ψ12(q1, q2) of the system can be represented in the

9) This, of course, means that the state of the whole system is completely described
also. However, we emphasize that the converse statement is by no means true: a complete
description of the state of the whole system does not in general completely determine the
states of its individual parts (see also §14).
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form of a product of the wave functions Ψ1(q1) and Ψ2(q2) of its parts:

Ψ12(q1, q2) = Ψ1(q1)Ψ2(q2). (2.3)

If the two parts do not interact, then this relation between the wave function
of the system and those of its parts will be maintained at future instants
also, i.e. we can write

Ψ12(q1, q2, t) = Ψ1(q1, t)Ψ2(q2, t). (2.4)

§ 3. Operators

Let us consider some physical quantity f which characterizes the state of
a quantum system. Strictly, we should speak in the following discussion not
of one quantity, but of a complete set of them at the same time. However, the
discussion is not essentially changed by this, and for brevity and simplicity
we shall work below in terms of only one physical quantity.

The values which a given physical quantity can take are called in quantum
mechanics its eigenvalues, and the set of these is referred to as the spectrum of
eigenvalues of the given quantity. In classical mechanics, generally speaking,
quantities run through a continuous series of values. In quantum mechanics
also there are physical quantities (for instance, the coordinates) whose eigen-
values occupy a continuous range; in such cases we speak of a continuous
spectrum of eigenvalues. As well as such quantities, however, there exist in
quantum mechanics others whose eigenvalues form some discrete set; in such
cases we speak of a discrete spectrum.

We shall suppose for simplicity that the quantity f considered here has a
discrete spectrum; the case of a continuous spectrum will be discussed in §5.
The eigenvalues of the quantity f are denoted by fn, where the suffix n takes
the values 0, 1, 2, 3, . . . .. We also denote the wave function of the system, in
the state where the quantity f has the value fn, by Ψn. The wave functions
Ψn are called the eigenfunctions of the given physical quantity f . Each of
these functions is supposed normalized, so that∫

|Ψn|2dq = 1. (3.1)

If the system is in some arbitrary state with wave function Ψ, a measurement
of the quantity f carried out on it will give as a result one of the eigenvalues
fn. In accordance with the principle of superposition, we can assert that
the wave function Ψ must be a linear combination of those eigenfunctions
Ψn which correspond to the values fn that can be obtained, with probability
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different from zero, when a measurement is made on the system and it is in
the state considered. Hence, in the general case of an arbitrary state, the
function Ψ can be represented in the form of a series

Ψ =
∑

anΨn, (3.2)

where the summation extends over all n, and the an are some constant coef-
ficients.

Thus we reach the conclusion that any wave function can be, as we say,
expanded in terms of the eigenfunctions of any physical quantity. A set
of functions in terms of which such an expansion can be made is called a
complete (or closed) set.

The expansion (3.2) makes it possible to determine the probability of
finding (i.e. the probability of getting the corresponding result on measure-
ment), in a system in a state with wave function Ψ, any given value fn of the
quantity f . For, according to what was said in the previous section, these
probabilities must be determined by some expressions bilinear in Ψ and Ψ∗,
and therefore must be bilinear in an and a∗n. Furthermore, these expressions
must, of course, be positive. Finally, the probability of the value fn must
become unity if the system is in a state with wave function Ψ = Ψn, and
must become zero if there is no term containing Ψn in the expansion (3.2) of
the wave function Ψ. The only essentially positive quantity satisfying these
conditions is the square of the modulus of the coefficient an. Thus we reach
the result that the squared modulus |an|2 of each coefficient in the expansion
(3.2) determines the probability of the corresponding value fn of the quan-
tity f in the state with wave function Ψ. The sum of the probabilities of all
possible values fn must be equal to unity; in other words, the relation∑

n

|an|2 = 1 (3.3)

must hold.
If the function Ψ were not normalized, then the relation (3.3) would not

hold either. The sum
∑

|an|2 would then be given by some expression bilinear
in Ψ and Ψ∗, and becoming unity when Ψ was normalized. Only the integral∫
ΨΨ∗dq is such an expression. Thus the equation

∑
n

ana
∗
n =

∫
ΨΨ∗dq (3.4)

must hold.
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On the other hand, multiplying by Ψ the expansion of the function Ψ∗

(the complex conjugate of Ψ), and integrating, we obtain∫
ΨΨ∗dq =

∑
n

a∗n

∫
Ψ∗

nΨdq.

Comparing this with (3.4), we have∑
n

ana
∗
n =

∑
n

a∗n

∫
Ψ∗

nΨdq,

from which we derive the following formula determining the coefficients an
in the expansion of the function Ψ in terms of the eigenfunctions Ψn:

an =

∫
ΨΨ∗

ndq. (3.5)

If we substitute here from (3.2), we obtain

an =
∑
m

am

∫
ΨmΨ

∗
ndq

from which it is evident that the eigenfunctions must satisfy the conditions∫
ΨmΨ

∗
ndq = δnm (3.6)

where δnm = 1 for n = m and δnm = 0 for n ̸= m. The fact that the integrals
of the products ΨmΨ

∗
n with n ̸= m vanish is called the orthogonality of the

functions Ψn. Thus the set of eigenfunctions Ψn forms a complete set of
normalized and orthogonal (or, for brevity, orthonormal) functions.

We shall now introduce the concept of the mean value f of the quantity
f in the given state. In accordance with the usual definition of mean values,
we define f as the sum of all the eigenvalues fn of the given quantity, each
multiplied by the corresponding probability |an|2. Thus

f =
∑
n

fn|an|2. (3.7)

We shall write f in the form of an expression which does not contain the
coefficients an in the expansion of the function Ψ, but this function itself.
Since the products anan∗ appear in (3.7), it is clear that the required expres-
sion must be bilinear in Ψ and Ψ∗. We introduce a mathematical operator,
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which we denote10) by f̂ and define as follows. Let (f̂Ψ) denote the result
of the operator f̂ acting on the function Ψ. We define f̂ in such a way that
the integral of the product of (f̂Ψ) and the complex conjugate function Ψ∗

is equal to the mean value f :

f =

∫
Ψ∗(f̂Ψ)dq. (3.8)

It is easily seen that, in the general case, the operator f̂ is a linear11) integral
operator. For, using the expression (3.5) for an, we can rewrite the definition
(3.7) of the mean value in the form

f =
∑
n

fnana
∗
n =

∫
Ψ∗(
∑
n

anfnΨn)dq.

Comparing this with (3.8), we see that the result of the operator f̂ acting on
the function Ψ has the form

(f̂Ψ) =
∑
n

anfnΨn. (3.9)

If we substitute here the expression (3.5) for an, we find that f̂ is an integral
operator of the form

(f̂Ψ) =

∫
K(q, q′)Ψ(q′)dq′, (3.10)

where the function K(q, q′) (called the kernel of the operator) is

K(q, q′) =
∑
n

fnΨ
∗
n(q

′)ψn(q). (3.11)

Thus, for every physical quantity in quantum mechanics, there is a definite
corresponding linear operator.

It is seen from (3.9) that, if the function Ψ is one of the eigenfunctions
Ψn(so that all the an except one are zero), then, when the operator f̂ acts
on it, this function is simply multiplied by the corresponding eigenvalue fn:

f̂Ψn = fnΨn. (3.12)
10) By convention, we shall always denote operators by letters with circumflexes.
11) An operator is said to be linear if it has the properties

f̂(Ψ1 +Ψ2) = f̂(Ψ1) + f̂(Ψ2) and f̂(aΨ) = af̂Ψ

where Ψ1 and Ψ2 are arbitrary functions and a is an arbitrary constant.
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(In what follows we shall always omit the parentheses in the expression (f̂Ψ),
where this cannot cause any misunderstanding; the operator is taken to act
on the expression which follows it.) Thus we can say that the eigenfunctions
of the given physical quantity f are the solutions of the equation

f̂Ψ = fΨ,

where f is a constant, and the eigenvalues are the values of this constant for
which the above equation has solutions satisfying the required conditions.
As we shall see below, the form of the operators for various physical quan-
tities can be determined from direct physical considerations, and then the
above property of the operators enables us to find the eigenfunctions and
eigenvalues by solving the equations f̂Ψ = fΨ.

Both the eigenvalues of a real physical quantity and its mean value in
every state are real. This imposes a restriction on the corresponding opera-
tors. Equating the expression (3.8) to its complex conjugate, we obtain the
relation ∫

Ψ∗(f̂Ψ)dq =

∫
ψ(f̂ ∗Ψ∗)dq, (3.13)

where f̂ ∗ denotes the operator which is the complex conjugate of f̂ .12) This
relation does not hold in general for an arbitrary linear operator, so that it
is a restriction on the form of the operator f̂ . For an arbitrary operator f̂
we can find what is called the transposed operator ˜̂f , defined in such a way
that ∫

Φ(f̂ ∗Ψ)dq =

∫
Ψ(
˜̂
fΦ)dq (3.14)

where Ψ and Φ are two different functions. If we take, as the function Φ, the
function Ψ∗ which is the complex conjugate of Ψ, then a comparison with
(3.13) shows that we must have

˜̂
f = f̂ ∗ (3.15)

Operators satisfying this condition are said to be Hermitian.13) Thus the op-
erators corresponding, in the mathematical formalism of quantum mechanics,
to real physical quantities must be Hermitian.

We can formally consider complex physical quantities also, i.e. those
whose eigenvalues are complex. Let f be such a quantity. Then we can

12) By definition, if for the operator f̂ we have f̂Ψ = φ, then the complex conjugate
operator f̂∗ is that for which we have f̂∗Ψ∗ = φ∗.

13) For a linear integral operator of the form (3.10), the Hermitian condition means that
the kernel of the operator must be such that K(q, q) = K∗(q, q).
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introduce its complex conjugate quantity f ∗, whose eigenvalues are the com-
plex conjugates of those of f . We denote byf̂ † the operator corresponding to
the quantity f ∗. It is called the Hermitian conjugate of the operator f̂ and,
in general, will be different from the definition of the operator f̂ ∗: the mean
value of the quantity f ∗ in a state Ψ is

f ∗ =

∫
Ψ∗f̂ †Ψdq.

We also have (
f
)∗

=

[∫
Ψ∗f̂Ψdq

]∗
=

∫
Ψf̂ ∗Ψ∗dq

=

∫
Ψ∗˜̂f ∗

Ψdq.

Equating these two expressions gives

f̂ † =
˜̂
f
∗
, (3.16)

from which it is clear that f̂ † is in general not the same as f̂ ∗.
The condition (3.15) can now be written

f̂ = f̂ †, (3.17)

i.e. the operator of a real physical quantity is the same as its Hermitian
conjugate (Hermitian operators are also called self-conjugate).

We shall show how the orthogonality of the eigenfunctions of an Hermitian
operator corresponding to different eigenvalues can be directly proved. Let
fn and fm be two different eigenvalues of the real quantity f , and Ψn, Ψm

the corresponding eigenfunctions:

f̂Ψn = fnΨn, f̂Ψm = fmΨm.

Multiplying both sides of the first of these equations by Ψ∗
m, and both

sides of the complex conjugate of the second by Ψn, and subtracting corre-
sponding terms, we find

Ψ∗
mf̂Ψn −Ψnf̂

∗Ψ∗
m = (fn − fm)ΨnΨ

∗
m.

We integrate both sides of this equation over q. Since f̂ ∗ =
˜̂
f , by (3.14) the

integral on the left-hand side of the equation is zero, so that we have

(fn − fm)

∫
ΨnΨ

∗
mdq = 0
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whence, since fn ̸= fm, we obtain the required orthogonality property of the
functions Ψn and Ψm.

We have spoken here of only one physical quantity f , whereas, as we
said at the beginning of this section, we should have spoken of a complete
set of simultaneously measurable physical quantities. We should then have
found that to each of these quantities f, g, . . . there corresponds its operator
f̂ , ĝ, . . . . The eigenfunctions Ψn then correspond to states in which all the
quantities concerned have definite values, i.e. they correspond to definite
sets of eigenvalues fn, gn, . . . , and are simultaneous solutions of the system
of equations

f̂Ψ = fΨ, ĝΨ = gΨ, . . . .

§ 4. Addition and multiplication of operators

If f̂ and ĝ are the operators corresponding to two physical quantities
f and g, the sum f + g has a corresponding operator f̂ + ĝ. However,
the significance of adding different physical quantities in quantum mechanics
depends considerably on whether the quantities are or are not simultaneously
measurable. If f and g are simultaneously measurable, the operators f̂ and
ĝ have common eigenfunctions, which are also eigenfunctions of the operator
f̂+ ĝ, and the eigenvalues of the latter operator are equal to the sums fn+gn.
But if f and g cannot simultaneously take definite values, their sum f + g
has a more restricted significance. We can assert only that the mean value
of this quantity in any state is equal to the sum of the mean values of the
separate quantities:

f + g = f + g. (4.1)

The eigenvalues and eigenfunctions of the operator f̂ + ĝ will not, in general,
now bear any relation to those of the quantities f and g. It is evident that,
if the operators f̂ and ĝ are Hermitian, the operator f̂ + ĝ will be so too, so
that its eigenvalues are real and are equal to those of the new quantity f + g
thus defined.

The following theorem should be noted. Let f0 and g0 be the smallest
eigenvalues of the quantities f and g, and (f +g)0 that of the quantity f +g.
Then

(f + g)0 ⩾ f0 + g0 (4.2)

The equality holds if f and g can be measured simultaneously. The proof
follows from the obvious fact that the mean value of a quantity is always
greater than or equal to its least eigenvalue. In a state in which the quantity
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f + g has the value (f + g)0 we have f + g = (f + g)0 , and since, on the
other hand, f + g = f + g ⩾ f0 + g0, we arrive at the inequality (4.2).

Next, let f and g once more be quantities that can be measured simul-
taneously. Besides their sum, we can also introduce the concept of their
product as being a quantity whose eigenvalues are equal to the products of
those of the quantities f and g. It is easy to see that, to this quantity, there
corresponds an operator whose effect consists of the successive action on the
function of first one and then the other operator. Such an operator is repre-
sented mathematically by the product of the operators f̂ and ĝ. For, if Ψn

are the eigenfunctions common to the operators f̂ and ĝ, we have

f̂ ĝΨn = f̂(ĝΨn) = f̂gnΨn = gnf̂Ψn = gnfnΨn

(the symbol f̂ ĝ denotes an operator whose effect on a function Ψ consists of
the successive action first of the operator ĝ on the function Ψ and then of the
operator f̂ on the function ĝΨ). We could equally well take the operator ĝf̂
instead of f̂ ĝ, the former differing from the latter in the order of its factors.
It is obvious that the result of the action of either of these operators on the
functions Ψn will be the same. Since, however, every wave function Ψ can
be represented as a linear combination of the functions Ψn, it follows that
the result of the action of the operators f̂ ĝ and ĝf̂ on an arbitrary function
will also be the same. This fact can be written in the form of the symbolic
equation f̂ ĝ = ĝf̂ or

f̂ ĝ − ĝf̂ = 0 (4.3)

Two such operators f̂ and ĝ are said to be commutative, or to commute
with each other. Thus we arrive at the important result: if two quantities f
and g can simultaneously take definite values, then their operators commute
with each other.

The converse theorem can also be proved (§11): if the operators f̂ and ĝ
commute, then all their eigenfunctions can be taken common to both; physi-
cally, this means that the corresponding physical quantities can be measured
simultaneously. Thus the commutability of the operators is a necessary and
sufficient condition for the physical quantities to be simultaneously measur-
able.

A particular case of the product of operators is an operator raised to
some power. From the above discussion we can deduce that the eigenvalues
of an operator f̂ p (where p is an integer) are equal to the pth powers of
the eigenvalues of the operator f̂ . Any function φ(f̂) of an operator can be
defined as an operator whose eigenvalues are equal to the same function φ(f)
of the eigenvalues of the operator f̂ . If the function φ(f) can be expanded
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as a Taylor series, this expresses the effect of the operator φ(f̂) in terms of
those of various powers f̂ p.

In particular, the operator f̂−1 is called the inverse of the operator f̂ .
It is evident that the successive action of the operators f̂ and f̂−1 on any
function leaves the latter unchanged, i.e. f̂ f̂−1 = f̂−1f̂ = 1.

If the quantities f and g cannot be measured simultaneously, the concept
of their product does not have the same direct meaning. This appears in the
fact that the operator f̂ ĝ is not Hermitian in this case, and hence cannot cor-
respond to any real physical quantity. For, by the definition of the transpose
of an operator we can write∫

Ψf̂ ĝΦdq =

∫
Ψf̂(ĝΦ)dq =

∫
(ĝΦ)(

˜̂
fΨ)dq.

Here the operator ˜̂f acts only on the function Ψ, and the operator ĝ on Φ, so
that the integrand is a simple product of two functions ĝΦ and ˜̂fΨ. Again
using the definition of the transpose of an operator, we can write∫

Ψf̂ ĝΦdq =

∫
(
˜̂
fΨ)(ĝΦ)dq =

∫
Φ˜̂g˜̂fΦdq.

Thus we obtain an integral in which the functions Ψ and Φ have changed
places as compared with the original one. In other words, the operator ˜̂g˜̂f is
the transpose of f̂ ĝ, and we can write

˜̂
f ĝ = ˜̂g˜̂f (4.4)

i.e. the transpose of the product f̂ ĝ is the product of the transposes of the
factors written in the opposite order. Taking the complex conjugate of both
sides of equation (4.4), we have

(f̂ ĝ)† = ĝ†f̂ † (4.5)

If each of the operators f̂ and ĝ is Hermitian, then (f̂ ĝ)† = ĝf̂ . It follows
from this that the operator f̂ ĝ is Hermitian if and only if the factors f̂ and
ĝ commute.

We note that, from the products f̂ ĝ and ĝf̂ of two non-commuting Hermi-
tian operators, we can form an Hermitian operator, the symmetrized product

1

2
(f̂ ĝ + ĝf̂) (4.6)
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It is easy to see that the difference f̂ ĝ− ĝf̂ is an anti-Hermitian operator
(i.e. one for which the transpose is equal to the complex conjugate taken
with the opposite sign). It can be made Hermitian by multiplying by i; thus

i(f̂ ĝ − ĝf̂) (4.7)

is again an Hermitian operator.
In what follows we shall sometimes use for brevity the notation

{f̂ , ĝ} = f̂ ĝ − ĝf̂ (4.8)

called the commutator of these operators. It is easily seen that

{f̂ ĝ, ĥ} = {f̂ , ĥ}ĝ + f̂ ĝ, ĥ (4.9)

We notice that, if {f̂ , ĥ} = 0 and {ĝ, ĥ} = 0, it does not in general follow
that f̂ and ĝ commute.

§ 5. The continuous spectrum

All the relations given in §3 and 4, describing the properties of the eigen-
functions of a discrete spectrum, can be generalized without difficulty to the
case of a continuous spectrum of eigenvalues.

Let f be a physical quantity having a continuous spectrum. We shall
denote its eigenvalues by the same letter f simply, and the corresponding
eigenfunctions by Ψf . Just as an arbitrary wave function Ψ can be expanded
in a series (3.2) of eigenfunctions of a quantity having a discrete spectrum, it
can also be expanded (this time as an integral) in terms of the complete set
of eigenfunctions of a quantity with a continuous spectrum. This expansion
has the form

Ψ(q) =

∫
afΨf (q)df (5.1)

where the integration is extended over the whole range of values that can be
taken by the quantity f .

The subject of the normalization of the eigenfunctions of a continuous
spectrum is more complex than in the case of a discrete spectrum. The re-
quirement that the integral of the squared modulus of the function should
be equal to unity cannot here be satisfied, as we shall see below. Instead,
we try to normalize the functions Ψf in such a way that |af |2df is the prob-
ability that the physical quantity concerned, in the state described by the
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wave function Ψ, has a value between f and f + df . Since the sum of the
probabilities of all possible values of f must be equal to unity, we have∫

|af |2df = 1 (5.2)

(similarly to the relation (3.3) for a discrete spectrum).
Proceeding in exactly the same way as in the derivation of formula (3.5),

and using the same arguments, we can write, firstly,∫
ΨΨ∗dq =

∫
|af |2df

and, secondly, ∫
ΨΨ∗dq =

∫∫
a∗fΨ

∗
fΨdfdq.

By comparing these two expressions we find the formula which determines
the expansion coefficients,

af =

∫
Ψ(q)Ψ∗

f (q)dq, (5.3)

in exact analogy to (3.5).
To derive the normalization condition, we now substitute (5.1) in (5.3),

and obtain
af =

∫
af ′

(∫
Ψf ′Ψ∗

fdq

)
df ′

This relation must hold for arbitrary af , and therefore must be satisfied
identically. For this to be so, it is necessary that, first of all, the coefficient of
af , in the integrand (i.e. the integral

∫
Ψf ′Ψ∗

fdq) should be zero for all f ̸= f .
For f = f , this coefficient must become infinite (otherwise the integral over
f would vanish). Thus the integral

∫
Ψf ′Ψ∗

fdq is a function of the difference
f ′−f , which becomes zero for values of the argument different from zero and
is infinite when the argument is zero. We denote this function by δ(f ′ − f):∫

Ψf ′Ψ∗
fdq = δ(f ′ − f) (5.4)

The manner in which the function δ(f ′−f) becomes infinite for f ′−f = 0
is determined by the fact that we must have∫

δ(f ′ − f)af ′df ′ = af
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It is clear that, for this to be so, we must have∫
δ(f ′ − f)df ′ = 1

The function thus defined is called a delta function, and was first used
in theoretical physics by P. A. M. Dirac. We shall write out once more the
formulae which define it. They are

δ(x) = 0 for x ̸= 0, δ(0) = ∞, (5.5)

while ∫ +∞

−∞
δ(x)dx = 1. (5.6)

We can take as limits of integration any numbers such that x = 0 lies between
them. If f(x) is some function continuous at x = 0, then∫ +∞

−∞
δ(x)f(x)dx = f(0) (5.7)

This formula can be written in the more general form∫
δ(x− a)f(x)dx = f(a) (5.8)

where the range of integration includes the point x = a, and f(x) is contin-
uous at x = a. It is also evident that

δ(−x) = δ(x) (5.9)

i.e. the delta function is even. Finally, writing∫ +∞

−∞
δ(αx)dx =

∫ +∞

−∞
δ(y)

dy

|α|
=

1

|α|

we can deduce that
δ(αx) =

1

|α|
δ(x) (5.10)

where α is any constant.
The formula (5.4) gives the normalization rule for the eigenfunctions of a

continuous spectrum; it replaces the condition (3.6) for a discrete spectrum.
We see that the functions Ψf and Ψf ′ with f ̸= f ′ are, as before, orthogonal.
However, the integrals of the squared moduli |Ψf |2 of the functions diverge
for a continuous spectrum.
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The functions Ψf (q) satisfy still another relation similar to (5.4). To
derive this, we substitute (5.3) in (5.1), which gives

Ψ(q) =

∫
Ψ(q′)

(∫
Ψ∗

f (q
′)Ψf (q)df

)
dq′

whence we can at once deduce that we must have∫
Ψ∗

f (q
′)Ψf (q)df = δ(q′ − q) (5.11)

There is, of course, an analogous relation for a discrete spectrum:∑
n

Ψ∗
n(q

′)Ψn(q) = δ(q′ − q) (5.12)

Comparing the pair of formulae (5.1), (5.4) with the pair (5.3), (5.11), we
see that, on the one hand, the function Ψ(q) can be expanded in terms of the
functionsΨf (q) with expansion coefficients af and, on the other hand, formula
(5.3) represents an entirely analogous expansion of the function af ≡ a(f)
in terms of the functions Ψ∗

f (q), while the Ψ(q) play the part of expansion
coefficients. The function a(f), like Ψ(q), completely determines the state
of the system; it is sometimes called a wave function in the f representation
(while the function Ψ(q) is called a wave function in the q representation).
Just as |Ψ(q)|2 determines the probability for the system to have coordinates
lying in a given interval dq, so |a(f)|2 determines the probability for the values
of the quantity f to lie in a given interval df . On the one hand, the functions
Ψf (q) are the eigenfunctions of the quantity f in the q representation; on the
other hand, their complex conjugates are the eigenfunctions of the coordinate
q in the f representation.

Let φ(f) be some function of the quantity f , such that φ and f are related
in a one-to-one manner. Each of the functions Ψf (q) can then be regarded
as an eigenfunction of the quantity φ. Here, however, the normalization of
these functions must be changed: the eigenfunctions Ψφ(q) of the quantity �
must be normalized by the condition∫

Ψφ(f ′)Ψ
∗
φ(f)dq = δ [φ(f ′)− φ(f)] ,

whereas the functions Ψf , are normalized by the condition (5.4). The argu-
ment of the delta function becomes zero only for f ′ = f . As f ′ approaches
f , we have

φ(f ′)− φ(f) =
dφ(f)

df
(f ′ − f).
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By (5.10) we can therefore write14)

δ [φ(f ′)− φ(f)] =
1

|dφ(f)/df |
δ(f ′ − f) (5.13)

Comparing this with (5.4), we see that the functions Ψφ and Ψf are related
by

Ψφ(f) =
1√

|dφ(f)/df |
Ψf (5.14)

There are also physical quantities which in one range of values have a
discrete spectrum, and in another a continuous spectrum. For the eigenfunc-
tions of such a quantity all the relations derived in this and the previous
sections are, of course, true. It need only be noted that the complete set of
functions is formed by combining the eigenfunctions of both spectra. Hence
the expansion of an arbitrary wave function in terms of the eigenfunctions of
such a quantity has the form

Ψ(q) =
∑
n

anΨn(q) +

∫
afΨf (q)df (5.15)

where the sum is taken over the discrete spectrum and the integral over the
whole continuous spectrum.

The coordinate q itself is an example of a quantity having a continuous
spectrum. It is easy to see that the operator corresponding to it is sim-
ply multiplication by q. For, since the probability of the various values of
the coordinate is determined by the square |Ψ(q)|2, the mean value of the
coordinate is

q =

∫
q|Ψ|2dq =

∫
Ψ∗qΨdq.

Comparison of this with the definition (3.8) of an operator shows that15)

q̂ = q. (5.16)

The eigenfunctions of this operator must be determined, according to the
usual rule, by the equation qΨq0 = q0Ψq0, where q0 temporarily denotes the

14) In general, if φ(x) is some one-valued function (the inverse function need not be
one-valued), we have

δ [φ(x)] =
∑
i

1

|φ′(αi)|
δ(x− αi) (5.13a)

where αi are the roots of the equation φ(x) = 0.
15) In future we shall always, for simplicity, write operators which amount to multipli-

cation by some quantity in the form of that quantity itself.
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actual values of the coordinate as distinct from the variable q. Since this
equation can be satisfied either by Ψq0 = 0 or by q = q0, it is clear that the
eigenfunctions which satisfy the normalization condition are16)

Ψq0 = δ(q − q0) (5.17)

§ 6. The passage to the limiting case of classical
mechanics

Quantum mechanics contains classical mechanics in the form of a certain
limiting case. The question arises as to how this passage to the limit is made.

In quantum mechanics an electron is described by a wave function which
determines the various values of its coordinates; of this function we so far
know only that it is the solution of a certain linear partial differential equa-
tion. In classical mechanics, on the other hand, an electron is regarded as a
material particle, moving in a path which is completely determined by the
equations of motion. There is an interrelation, somewhat similar to that
between quantum and classical mechanics, in electrodynamics between wave
optics and geometrical optics. In wave optics, the electromagnetic waves are
described by the electric and magnetic field vectors, which satisfy a definite
system of linear differential equations, namely Maxwell’s equations. In ge-
ometrical optics, however, the propagation of light along definite paths, or
rays, is considered. Such an analogy enables us to see that the passage from
quantum mechanics to the limit of classical mechanics occurs similarly to the
passage from wave optics to geometrical optics.

Let us recall how this latter transition is made mathematically (see Fields,
§53). Let u be any of the field components in the electromagnetic wave. It
can be written in the form u = aeiφ (with a and φ real), where a is called
the amplitude and φ the phase of the wave (called in geometrical optics
the eikonal). The limiting case of geometrical optics corresponds to small
wavelengths; this is expressed mathematically by saying that φ varies by a
large amount over short distances; this means, in particular, that it can be

16) The expansion coefficients for an arbitrary function Ψ in terms of these eigenfunctions
are

aq0 =

∫
Ψ(q)δ(q − q0)dq = Ψ(q0).

The probability that the value of the coordinate lies in a given interval dq0 is

|aq0 |2dq0 = |Ψ(q0)|2dq0,

as it should be.
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supposed large in absolute value.
Similarly, we start from the hypothesis that, to the limiting case of classi-

cal mechanics, there correspond in quantum mechanics wave functions of the
formΨ = aeiφ, where a is a slowly varying function and φ takes large values.
As is well known, the path of a particle can be determined in mechanics by
means of the variational principle, according to which what is called the ac-
tion S of a mechanical system must take its least possible value (the principle
of least action). In geometrical optics the path of the rays is determined by
what is called Fermat’s principle, according to which the optical path length
of the ray, i.e. the difference between its phases at the beginning and end of
the path, must take its least (or greatest) possible value.

On the basis of this analogy, we can assert that the phase φ of the wave
function, in the limiting (classical) case, must be proportional to the mechan-
ical action S of the physical system considered, i.e. we must have S = constφ.
The constant of proportionality is called Planck’s constant17) and is denoted
by ℏ. It has the dimensions of action (since φ is dimensionless) and has the
value

ℏ = 1.054× 10−27erg · s
Thus, the wave function of an “almost classical” (or, as we say, quasi-

classical) physical system has the form

Ψ = aeiS/ℏ (6.1)

Planck’s constant ℏ plays a fundamental part in all quantum phenomena.
Its relative value (compared with other quantities of the same dimensions)
determines the “extent of quantization” of a given physical system. The
transition from quantum mechanics to classical mechanics, corresponding to
large phase, can be formally described as a passage to the limit ℏ → 0 (just
as the transition from wave optics to geometrical optics corresponds to a
passage to the limit of zero wavelength, λ→ 0).

We have ascertained the limiting form of the wave function, but the
question still remains how it is related to classical motion in a path. In
general, the motion described by the wave function does not tend to motion
in a definite path. Its connection with classical motion is that, if at some
initial instant the wave function, and with it the probability distribution
of the coordinates, is given, then at subsequent instants this distribution
will change according to the laws of classical mechanics (for a more detailed
discussion of this, see the end of §17).

17) It was introduced into physics by M. Planck in 1900. The constant ℏ which we use
everywhere in this book, is, strictly speaking, Planck’s constant divided by 2π; this is
Dirac’s notation.
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In order to obtain motion in a definite path, we must start from a wave
function of a particular form, which is perceptibly different from zero only in
a very small region of space (what is called a wave packet); the dimensions
of this region must tend to zero with ℏ. Then we can say that, in the quasi-
classical case, the wave packet will move in space along a classical path of a
particle.

Finally, quantum-mechanical operators must reduce, in the limit, simply
to multiplication by the corresponding physical quantity.

§ 7. The wave function and measurements

Let us again return to the process of measurement, whose properties
have been qualitatively discussed in §1; we shall show how these properties
are related to the mathematical formalism of quantum mechanics.

We consider a system consisting of two parts: a classical apparatus and
an electron (regarded as a quantum object). The process of measurement
consists in these two parts’ coming into interaction with each other, as a re-
sult of which the apparatus passes from its initial state into some other; from
this change of state we draw conclusions concerning the state of the electron.
The states of the apparatus are distinguished by the values of some physical
quantity (or quantities) characterizing it—the “readings of the apparatus”.
We conventionally denote this quantity by g, and its eigenvalues by gn; these
take in general, in accordance with the classical nature of the apparatus, a
continuous range of values, but we shall—merely in order to simplify the
subsequent formulae—suppose the spectrum discrete. The states of the ap-
paratus are described by means of quasi-classical wave functions, which we
shall denote by Ψn(ξ), where the suffix n corresponds to the “reading” gn of
the apparatus, and ξ denotes the set of its coordinates. The classical nature
of the apparatus appears in the fact that, at any given instant, we can say
with certainty that it is in one of the known states Ψn with some definite
value of the quantity g; for a quantum system such an assertion would, of
course, be unjustified.

Let Φ0(ξ) be the wave function of the initial state of the apparatus (before
the measurement), and Ψ(q) some arbitrary normalized initial wave function
of the electron (q denoting its coordinates). These functions describe the
state of the apparatus and of the electron independently, and therefore the
initial wave function of the whole system is the product

Ψ(q)Φ0(ξ) (7.1)

Next, the apparatus and the electron interact with each other. Applying the
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equations of quantum mechanics, we can in principle follow the change of the
wave function of the system with time. After the measuring process it may
not, of course, be a product of functions of ξ and q. Expanding the wave
function in terms of the eigenfunctions Φn of the apparatus (which form a
complete set of functions), we obtain a sum of the form∑

n

An(q)Ψn(ξ) (7.2)

where the An(q) are some functions of q.
The classical nature of the apparatus, and the double role of classical me-

chanics as both the limiting case and the foundation of quantum mechanics,
now make their appearance. As has been said above, the classical nature of
the apparatus means that, at any instant, the quantity g (the “reading of the
apparatus“) has some definite value. This enables us to say that the state
of the system apparatus + electron after the measurement will in actual fact
be described, not by the entire sum (7.2), but by only the one term which
corresponds to the “reading” gn of the apparatus,

An(q)Ψn(ξ) (7.3)

It follows from this that An(q) is proportional to the wave function of the
electron after the measurement. It is not the wave function itself, as is seen
from the fact that the function An(q) is not normalized. It contains both
information concerning the properties of the resulting state of the electron
and the probability (determined by the initial state of the system) of the
occurrence of the nth “reading” of the apparatus.

Since the equations of quantum mechanics are linear, the relation between
An(q) and the initial wave function of the electron Ψ(q) is in general given
by some linear integral operator:

An(q) =

∫
Kn(q, q

′)Ψ(q′)dq′ (7.4)

with a kernel Kn(q, q
′) which characterizes the measurement process con-

cerned.
We shall suppose that the measurement concerned is such that it gives

a complete description of the state of the electron. In other words (see
§1), in the resulting state the probabilities of all the quantities must be
independent of the previous state of the electron (before the measurement).
Mathematically, this means that the form of the functions An(q) must be
determined by the measuring process itself, and does not depend on the
initial wave function Ψ(q) of the electron. Thus the An must have the form

An(q) = anφn(q) (7.5)
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where the φn are definite functions, which we suppose normalized, and only
the constants an depend on Ψ(q). In the integral relation (7.4) this cor-
responds to a kernel Kn(q, q

′) which is a product of a function of q and a
function of q′:

Kn(q, q
′) = φn(q)Ψ

∗
n(q

′) (7.6)
then the linear relation between the constants an and the function Ψ(q) is

an =

∫
Ψ(q)Ψ∗

n(q)dq (7.7)

where the Ψn(q) are certain functions depending on the process of measure-
ment.

The functions φn(q) are the normalized wave functions of the electron
after measurement. Thus we see how the mathematical formalism of the
theory reflects the possibility of finding by measurement a state of the elec-
tron described by a definite wave function.

If the measurement is made on an electron with a given wave function
Ψ(q), the constants an have a simple physical meaning: in accordance with
the usual rules, |an|2 is the probability that the measurement will give the
nth result. The sum of the probabilities of all results is equal to unity:∑

n

|an|2 = 1 (7.8)

In order that equations (7.7) and (7.8) should hold for an arbitrary nor-
malized function Ψ(q), it is necessary (cf. §3) that an arbitrary function
Ψ(q) can be expanded in terms of the functions Ψn(q). This means that the
functions Ψn(q) form a complete set of normalized and orthogonal functions.

If the initial wave function of the electron coincides with one of the func-
tions Ψn(q), then the corresponding constant an is evidently equal to unity,
while all the others are zero. In other words, a measurement made on an
electron in the state Ψn(q) gives with certainty the nth result.

All these properties of the functions Ψn(q) show that they are the eigen-
functions of some physical quantity (denoted by f) which characterizes the
electron, and the measurement concerned can be spoken of as a measurement
of this quantity.

It is very important to notice that the functions Ψn(q) do not, in general,
coincide with the functions φn(q); the latter are in general not even mutually
orthogonal, and do not form a set of eigenfunctions of any operator. This
expresses the fact that the results of measurements in quantum mechanics
cannot be reproduced. If the electron was in a state Ψn(q), then a measure-
ment of the quantity f carried out on it leads with certainty to the value fn.
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After the measurement, however, the electron is in a state φn(q) different
from its initial one, and in this state the quantity f does not in general take
any definite value. Hence, on carrying out a second measurement on the
electron immediately after the first, we should obtain for f a value which did
not agree with that obtained from the first measurement.18) To predict (in
the sense of calculating probabilities) the result of the second measurement
from the known result of the first, we must take from the first measurement
the wave function φn(q) of the state in which it resulted, and from the sec-
ond measurement the wave function Ψn(q) of the state whose probability
is required. This means that from the equations of quantum mechanics we
determine the wave function φn(q, t) which, at the instant when the first
measurement is made, is equal to φn(q); the probability of the mth result
of the second measurement, made at time t, is then given by the squared
modulus of the integral

∫
φn(q, t)Ψ

∗
m(q)dq.

We see that the measuring process in quantum mechanics has a “two-
faced” character: it plays different parts with respect to the past and future
of the electron. With respect to the past, it “verifies” the probabilities of
the various possible results predicted from the state brought about by the
previous measurement. With respect to the future, it brings about a new
state (see also §44). Thus the very nature of the process of measurement
involves a far-reaching principle of irreversibility.

This irreversibility is of fundamental significance. We shall see later (at
the end of §18) that the basic equations of quantum mechanics are in them-
selves symmetrical with respect to a change in the sign of the time; here quan-
tum mechanics does not differ from classical mechanics. The irreversibility
of the process of measurement, however, causes the two directions of time to
be physically non-equivalent, i.e. creates a difference between the future and
the past.

18) There is, however, an important exception to the statement that results of measure-
ments cannot be reproduced: the one quantity the result of whose measurement can be
exactly reproduced is the coordinate. Two measurements of the coordinates of an electron,
made at a sufficiently small interval of time, must give neighbouring values; if this were
not so, it would mean that the electron had an infinite velocity. Mathematically, this
is related to the fact that the coordinate commutes with the operator of the interaction
energy between the electron and the apparatus, since this energy is (in non-relativistic
theory) a function of the coordinates only.



CHAPTER II

ENERGY AND MOMENTUM

§ 8. The Hamiltonian operator

The wave function Ψ completely determines the state of a physical sys-
tem in quantum mechanics. This means that, if this function is given at
some instant, not only are all the properties of the system at that instant
described, but its behaviour at all subsequent instants is determined (only, of
course, to the degree of completeness which is generally admissible in quan-
tum mechanics). The mathematical expression of this fact is that the value
of the derivative ∂Ψ/∂t of the wave function with respect to time at any
given instant must be determined by the value of the function itself at that
instant, and, by the principle of superposition, the relation between them
must be linear. In the most general form we can write

iℏ
∂Ψ

∂t
= ĤΨ (8.1)

where Ĥ is some linear operator; the factor iℏ is introduced here for a reason
that will become apparent.

Since the integral
∫
Ψ∗Ψdq is a constant independent of time, we have

d

dt

∫
|Ψ|2dq =

∫
∂Ψ∗

∂t
Ψdq +

∫
Ψ∗∂Ψ

∂t
dq = 0

Substituting here (8.1) and using in the first integral the definition of the
transpose of an operator, we can write (omitting the common factor i/ℏ)

∫
ΨĤ∗Ψ∗dq −

∫
Ψ∗ĤΨdq =

∫
Ψ∗ ˜̂H∗

Ψdq −
∫

Ψ∗ĤΨdq

=

∫
Ψ∗
( ˜̂
H

∗
− Ĥ

)
Ψdq = 0.

Since this equation must hold for an arbitrary function Ψ, it follows that we
must have identically Ĥ† = Ĥ; the operator Ĥ is therefore Hermitian. Let

29
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us find the physical quantity to which it corresponds. To do this, we use the
limiting expression (6.1) for the wave function and write

∂Ψ

∂t
=

i

ℏ
∂S

∂t
Ψ;

the slowly varying amplitude a need not be differentiated. Comparing this
equation with the definition (8.1), we see that, in the limiting case, the
operator Ĥ reduces to simply multiplying by −∂S/∂t. This means that
−∂S/∂t is the physical quantity into which the Hermitian operator Ĥ passes.

The derivative −∂S/∂t is just Hamilton’s function H for a mechanical
system. Thus the operator Ĥ is what corresponds in quantum mechanics
to Hamilton’s function; this operator is called the Hamiltonian operator or,
more briefly, the Hamiltonian of the system. If the form of the Hamiltonian is
known, equation (8.1) determines the wave functions of the physical system
concerned. This fundamental equation of quantum mechanics is called the
wave equation.

§ 9. The differentiation of operators with respect to
time

The concept of the derivative of a physical quantity with respect to time
cannot be defined in quantum mechanics in the same way as in classical me-
chanics. For the definition of the derivative in classical mechanics involves
the consideration of the values of the quantity at two neighbouring but dis-
tinct instants of time. In quantum mechanics, however, a quantity which at
some instant has a definite value does not in general have definite values at
subsequent instants; this was discussed in detail in §1.

Hence the idea of the derivative with respect to time must be differently
defined in quantum mechanics. It is natural to define the derivative ḟ of a
quantity f as the quantity whose mean value is equal to the derivative, with
respect to time, of the mean value . Thus we have the definition

ḟ = ḟ (9.1)

Starting from this definition, it is easy to obtain an expression for the quantum-
mechanical operator ̂̇f corresponding to the quantity f̂ :

ḟ = ḟ =
d

dt

∫
Ψ∗f̂Ψdq =

∫
Ψ∗∂f̂

∂t
Ψdq +

∫
∂Ψ∗

∂t
f̂Ψdq +

∫
Ψ∗f̂

∂Ψ

∂t
dq.
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Here ∂f/∂t is the operator obtained by differentiating the operator f with
respect to time; f̂ may depend on the time as a parameter. Substituting for
∂Ψ/∂t, ∂Ψ∗/∂t their expressions according to (8.1), we obtain

ḟ =

∫
Ψ∗∂f̂

∂t
Ψdq +

i

ℏ

∫
(Ĥ∗Ψ∗)f̂Ψdq − i

ℏ

∫
Ψ∗f̂(ĤΨ)dq.

Since the operator Ĥ is Hermitian, we have∫
(Ĥ∗Ψ∗)(f̂Ψ)dq =

∫
Ψ∗Ĥf̂Ψdq;

thus

ḟ =

∫
Ψ∗

(
∂f̂

∂t
+

i

ℏ
Ĥf̂ − i

ℏ
f̂ Ĥ

)
Ψdq.

Since, on the other hand, we must have, by the definition of mean values,
ḟ =

∫
Ψ∗̂̇fΨdq, it is seen that the expression in parentheses in the integrand

is the required operator ̂̇f :1)

̂̇f =
∂f

∂t
+

i

ℏ
(Ĥf̂ − f̂ Ĥ) (9.2)

1) In classical mechanics we have for the total derivative, with respect to time, of a
quantity f which is a function of the generalized coordinates qi and momenta pi of the
system

df

dt
=
∂f

∂t
+
∑
i

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)
.

Substituting, in accordance with Hamilton’s equations, qi = ∂H
∂pi

and pi = −∂H
∂qi

, we obtain

df

dt
=
∂f

∂t
+ [H, f ] ,

where
[H, f ] ≡

∑
i

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
is what is called the Poisson bracket for the quantities f and H (see Mechanics, §42).
On comparing with the expression (9.2), we see that, as we pass to the limit of classical
mechanics, the operator i(Ĥf̂ − f̂ Ĥ) reduces in the first approximation to zero, as it
should, and in the second approximation (with respect to ℏ) to the quantity ℏ [H, f ]. This
result is true also for any two quantities f and g; the operator i(f̂ ĝ− ĝf̂) tends in the limit
to the quantity ℏ [f, g], where [f, g] is the Poisson bracket

[f, g] ≡
∑
i

(
∂g

∂qi

∂f

∂pi
− ∂g

∂pi

∂f

∂qi

)
This follows from the fact that we can always formally imagine a system whose Hamiltonian
is ĝ.
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If the operator f̂ is independent of time, ̂̇f reduces, apart from a constant
factor, to the commutator of the operator f̂ and the Hamiltonian.

A very important class of physical quantities is formed by those whose op-
erators do not depend explicitly on time, and also commute with the Hamil-
tonian, so that ̂̇f = 0. Such quantities are said to be conserved. For these
ḟ = ḟ = 0, that is, is constant. In other words, the mean value of the quan-
tity remains constant in time. We can also assert that, if in a given state
the quantity f has a definite value (i.e. the wave function is an eigenfunc-
tion of the operator f̂), then it will have a definite value (the same one) at
subsequent instants also.

§ 10. Stationary states

The Hamiltonian of a closed system (and of a system in a constant ex-
ternal field) cannot contain the time explicitly. This follows from the fact
that, for such a system, all times are equivalent. Since, on the other hand,
any operator of course commutes with itself, we reach the conclusion that
Hamilton’s function is conserved for systems which are not in a varying ex-
ternal field. As is well known, a Hamilton’s function which is conserved is
called the energy. The law of conservation of energy in quantum mechanics
signifies that, if in a given state the energy has a definite value, this value
remains constant in time.

States in which the energy has definite values are called stationary states
of a system. They are described by wave functions Ψn which are the eigen-
functions of the Hamiltonian operator, i.e. which satisfy the equation ĤΨn =
EnΨn, where En are the eigenvalues of the energy. Correspondingly, the wave
equation (8.1) for the function Ψn,

iℏ
∂Ψn

∂t
= ĤΨn = EnΨn

can be integrated at once with respect to time and gives

Ψn = exp

(
− i

ℏ
Ent

)
ψn(q) (10.1)

where Ψn is a function of the coordinates only. This determines the relation
between the wave functions of stationary states and the time.

We shall denote by the small letter ψ the wave functions of stationary
states without the time factor. These functions, and also the eigenvalues of
the energy, are determined by the equation

Ĥψ = Eψ (10.2)
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The stationary state with the smallest possible value of the energy is
called the normal or ground state of the system.

The expansion of an arbitrary wave function Ψ in terms of the wave
functions of stationary states has the form

Ψ =
∑
n

an exp

(
− i

ℏ
Ent

)
ψn(q) (10.3)

The squared moduli |an|2 of the expansion coefficients, as usual, deter-
mine the probabilities of various values of the energy of the system.

The probability distribution for the coordinates in a stationary state is
determined by the squared modulus |Ψn|2 = |ψn|2 we see that it is indepen-
dent of time. The same is true of the mean values

f =

∫
Ψ∗

nf̂Ψndq =

∫
ψ∗
nf̂ψndq

of any physical quantity f (whose operator does not depend explicitly on the
time).

As has been said, the operator of any quantity that is conserved com-
mutes with the Hamiltonian. This means that any physical quantity that is
conserved can be measured simultaneously with the energy.

Among the various stationary states, there may be some which correspond
to the same value of the energy (the same energy level of the system), but
differ in the values of some other physical quantities. Such energy levels, to
which several different stationary states correspond, are said to be degenerate.
Physically, the possibility that degenerate levels can exist is related to the
fact that the energy does not in general form by itself a complete set of
physical quantities.

If there are two conserved physical quantities f and g whose operators do
not commute, then the energy levels of the system are in general degenerate.
For, let ψ be the wave function of a stationary state in which, besides the
energy, the quantity f also has a definite value. Then we can say that the
function ĝψ does not coincide (apart from a constant factor) with ψ; if it
did, this would mean that the quantity g also had a definite value, which is
impossible, since f and g cannot be measured simultaneously. On the other
hand, the function ĝψ is an eigenfunction of the Hamiltonian, corresponding
to the same value E of the energy as ψ:

Ĥ(ĝψ) = ĝĤψ = E(ĝψ)

Thus we see that the energy E corresponds to more than one eigenfunction,
i.e. the energy level is degenerate.
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It is clear that any linear combination of wave functions corresponding
to the same degenerate energy level is also an eigenfunction for that value
of the energy. In other words, the choice of eigenfunctions of a degenerate
energy level is not unique. Arbitrarily selected eigenfunctions of a degenerate
energy level are not, in general, orthogonal. By a proper choice of linear
combinations of them, however, we can always obtain a set of orthogonal
(and normalized) eigenfunctions (and this can be done in infinitely many
ways; for the number of independent coefficients in a linear transformation
of n functions is n2, while the number of normalization and orthogonality
conditions for n functions is n(n+ 1)/2, i.e. less than n2).

These statements concerning the eigenfunctions of a degenerate energy
level relate, of course, not only to eigenfunctions of the energy, but also to
those of any operator. Only those functions are automatically orthogonal
which correspond to different eigenvalues of the operator concerned; func-
tions which correspond to the same degenerate eigenvalue are not in general
orthogonal.

If the Hamiltonian of the system is the sum of two (or more) parts,
Ĥ = Ĥ1 + Ĥ2, one of which contains only the coordinates q1 and the other
only the coordinates q2, then the eigenfunctions of the operator Ĥ can be
written down as products of the eigenfunctions of the operators Ĥ1 and Ĥ2,
and the eigenvalues of the energy are equal to the sums of the eigenvalues of
these operators.

The spectrum of eigenvalues of the energy may be either discrete or con-
tinuous. A stationary state of a discrete spectrum always corresponds to a
finite motion of the system, i.e. one in which neither the system nor any part
of it moves off to infinity. For, with eigenfunctions of a discrete spectrum, the
integral

∫
|Ψ|2dq, taken over all space, is finite. This certainly means that

the squared modulus |Ψ|2 decreases quite rapidly, becoming zero at infinity.
In other words, the probability of infinite values of the coordinates is zero;
that is, the system executes a finite motion, and is said to be in a bound
state.

For wave functions of a continuous spectrum, the integral
∫
|Ψ|2dq di-

verges. Here the squared modulus |Ψ|2 of the wave function does not directly
determine the probability of the various values of the coordinates, and must
be regarded only as a quantity proportional to this probability. The diver-
gence of the integral

∫
|Ψ|2dq is always due to the fact that |Ψ|2 does not

become zero at infinity (or becomes zero insufficiently rapidly). Hence we
can say that the integral

∫
|Ψ|2dq, taken over the region of space outside any

arbitrarily large but finite closed surface, will always diverge. This means
that, in the state considered, the system (or some part of it) is at infinity.
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For a wave function which is a superposition of the wave functions of var-
ious stationary states of a continuous spectrum, the integral

∫
|Ψ|2dq may

converge, so that the system lies in a finite region of space. However, in the
course of time, this region moves unrestrictedly, and eventually the system
moves off to infinity. This can be seen as follows. Any superposition of wave
functions of a continuous spectrum has the form

Ψ =

∫
aE exp

(
− i

ℏ
Et

)
ψE(q)dE

The squared modulus of Ψ can be written in the form of a double integral:

|Ψ|2 =
∫∫

aEa
∗
E′ exp

(
i

ℏ
(E ′ − E)t

)
ψE(q)ψ

∗
E′(q)dEdE ′.

If we average this expression over some time interval T , and then let T tend
to infinity, the mean values of the oscillating factors exp{i(E ′ −E)t/ℏ}, and
therefore the whole integral, tend to zero in the limit. Thus the mean value,
with respect to time, of the probability of finding the system at any given
point of configuration space tends to zero. This is possible only if the motion
takes place throughout infinite space.2) Thus the stationary states of a
continuous spectrum correspond to an infinite motion of the system.

§ 11. Matrices

We shall suppose for convenience that the system considered has a discrete
energy spectrum; all the relations obtained below can be generalized at once
to the case of a continuous spectrum. Let Ψ =

∑
anΨn be the expansion of an

arbitrary wave function in terms of the wave functions Ψn of the stationary
states. If we substitute this expansion in the definition (3.8) of the mean
value of some quantity f , we obtain

f =
∑
n

∑
m

a∗namfnm(t) (11.1)

2) Note that, for a function which is a superposition of functions of a discrete spectrum,
we should have

|Ψ|2 =
∑
n

∑
m

ana
∗
mexp

{
i

ℏ
(Em − En)t

}
ψnψ

∗
m =

∑
n

|anψn(q)|2,

i.e. the probability density remains finite on averaging over time.
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where fnm(t) denotes the integral

fnm(t) =

∫
Ψ∗

nf̂Ψmdq (11.2)

The set of quantities fnm(t) with all possible n and m is called the ma-
trix of the quantity f , and each of the fnm(t) is called the matrix element
corresponding to the transition from state m to state n.3)

The dependence of the matrix elements fnm(t) on time is determined (if
the operator does not contain the time explicitly) by the dependence of the
functions Ψn on time. Substituting for them the expressions (10.1), we find
that

fnm(t) = fnme
iωnmt, (11.3)

where
ωnm =

En − Em

ℏ
(11.4)

is what is called the transition frequency between the states n and m, and
the quantities

fnm =

∫
ψ∗
nf̂ψmdq (11.5)

form the matrix of the quantity f which is independent of time, and which
is commonly used.4)

The matrix elements of the derivative are obtained by differentiating the
matrix elements of the quantity f with respect to time; this follows directly
from the fact that

ḟ = ḟ =
∑
m

∑
n

a∗namḟnm(t). (11.6)

From (11.3) we thus have for the matrix elements of ḟ

ḟnm(t) = iωnmfnm(t) (11.7)

or (cancelling the time factor exp(iωnmt) from both sides) for the matrix
elements independent of time(

ḟ
)
nm

= iωnmfnm =
i

ℏ
(En − Em)fnm (11.8)

3) The matrix representation of physical quantities was introduced by Heisenberg in
1925, before Schrödinger’s discovery of the wave equation. “Matrix mechanics” was later
developed by M. Born, W. Heisenberg and P. Jordan.

4) Because of the indeterminacy of the phase factor in normalized wave functions (see
§2), the matrix elements fnm (and fnm(t)) also are determined only to within a factor of
the form exp [i(αm − αn)]. Here again this indeterminacy has no effect on any physical
results.
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To simplify the notation in the formulae, we shall derive all our relations
below for the matrix elements independent of time; exactly similar relations
hold for the matrices which depend on the time.

For the matrix elements of the complex conjugate f ∗ of the quantity
f we obtain, taking into account the definition of the Hermitian conjugate
operator,

(f ∗)nm =

∫
ψ∗
nf̂

†ψmdq =

∫
ψ∗
n
˜̂
f ∗ψmdq =

∫
ψmf̂

∗ψ∗
ndq

or
(f ∗)nm = (fmn)

∗ (11.9)
For real physical quantities, which are the only ones we usually consider, we
consequently have

fnm = f ∗
mn (11.10)

(f ∗
mn stands for (fmn)

∗). Such matrices, like the corresponding operators, are
said to be Hermitian.

Matrix elements with n = m are called diagonal elements. These are
independent of time, and (11.10) shows that they are real. The element fnn
is the mean value of the quantity f in the state Ψn.

It is not difficult to obtain the multiplication rule” for matrices. To do
so, we first observe that the formula

f̂ψn =
∑
m

fmnψm (11.11)

holds. This is simply the expansion of the function in terms of the functions
ψm, the coefficients being determined in accordance with the general formula
(3.5). Remembering this formula, let us write down the result of the product
of two operators acting on the function ψn:

f̂ ĝψn = f̂(ĝψn) = f̂
∑
k

gknψk =
∑
k

gknf̂ψk =
∑
k,m

gknfmkψm.

Since, on the other hand, we must have

f̂ ĝψn =
∑
m

(fg)mnψm,

we arrive at the result that the matrix elements of the product fg are deter-
mined by the formula

(fg)mn =
∑
k

fmkgkn (11.12)
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This rule is the same as that used in mathematics for the multiplication of
matrices: the rows of the first matrix in the product are multiplied by the
columns of the second matrix.

If the matrix is given, then so is the operator itself. In particular, if the
matrix is given, it is in principle possible to determine the eigenvalues of the
physical quantity concerned and the corresponding eigenfunctions.

We shall now consider the values of all quantities at some definite in-
stant, and expand an arbitrary wave function Ψ (at that instant) in terms of
the eigenfunctions of the Hamiltonian, i.e. of the wave functions ψm of the
stationary states (these wave functions are independent of time).

Ψ =
∑
m

cmψm (11.13)

where the expansion coefficients are denoted by cm. We substitute this ex-
pansion in the equation f̂Ψ = fΨ which determines the eigenvalues and
eigenfunctions of the quantity f . We have∑

m

cm(f̂ψm) = f
∑
m

cmψm

We multiply both sides of this equation by ψ∗
n and integrate over q. Each of

the integrals on the left-hand side of the equation is the corresponding matrix
element fnm. On the right-hand side, all the integrals

∫
ψ∗
nψmdq with m ̸= n

vanish by virtue of the orthogonality of the functions ψm, and
∫
ψ∗
nψndq = 1

by virtue of their normalization.5) Thus∑
m

fnmcm = fcn, (11.14)

or ∑
m

(fnm − fδnm)cm = 0,

where

δnm =

{
0, n ̸= m;

1, n = m.

5) In accordance with the general rule (§5), the set of coefficients cn in the expansion
(11.13) can be considered as the wave function in the “energy representation” (the variable
being the suffix n that gives the number of the energy eigenvalue). The matrix fnm here
acts as the operator in this representation, the action of which on the wave function is given
by the left-hand side of (11.14). The formula then corresponds to the general expression
for the mean value of a quantity in terms of its operator and the wave function of the state
concerned.
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Thus we have obtained a system of homogeneous algebraic equations
of the first degree (with the cm as unknowns). As is well known, such a
system has solutions different from zero only if the determinant formed by
the coefficients in the equations vanishes, i.e. only if

|fnm − fδnm| = 0 (11.15)

The roots of this equation (in which f is regarded as the unknown) are the
possible values of the quantity f . The set of values cm satisfying the equations
(11.14) when f is equal to any of these values determines the corresponding
eigenfunction.

If, in the definition (11.5) of the matrix elements of the quantity f , we take
as ψn the eigenfunctions of this quantity, then from the equation f̂ψn = fnψn

we have
fnm =

∫
ψ∗
nf̂ψmdq = fm

∫
ψ∗
nψmdq.

By virtue of the orthogonality and normalization of the functions ψm, this
gives fnm = 0 for n ≠ m and fmm = fm. Thus only the diagonal matrix
elements are different from zero, and each of these is equal to the corre-
sponding eigenvalue of the quantity f . A matrix with only these elements
different from zero is said to be put in diagonal form. In particular, in the
usual representation, with the wave functions of the stationary states as the
functions ψn, the energy matrix is diagonal (and so are the matrices of all
other physical quantities having definite values in the stationary states). In
general, the matrix of a quantity f, defined with respect to the eigenfunctions
of some operator ĝ, is said to be the matrix of f in a representation in which
g is diagonal. We shall always, except where the subject is specially men-
tioned, understand in future by the matrix of a physical quantity its matrix
in the usual representation, in which the energy is diagonal. Everything that
has been said above regarding the dependence of matrices on time refers, of
course, only to this usual representation.6)

By means of the matrix representation of operators we can prove the
theorem mentioned in §4: if two operators commute with each other, they
have their entire sets of eigenfunctions in common. Let f̂ and ĝ be two
such operators. From f̂ ĝ = ĝf̂ and the matrix multiplication rule (11.12), it
follows that ∑

k

fmkgkn =
∑
k

gmkfkn.

6) Bearing in mind the diagonality of the energy matrix, it is easy to see that equation
(11.8) is the operator relation (9.2) written in matrix form.
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If we take the eigenfunctions of the operator f̂ as the set of functions ψn with
respect to which the matrix elements are calculated, we shall have fmk = 0
for m ̸= k, so that the above equation reduces to fmmgmn = gmnfnn, or

gmn(fm − fn) = 0

If all the eigenvalues fn of the quantity f are different, then for all m ̸= n we
have fmfn ̸= 0, so that we must have gmn = 0. Thus the matrix gmn is also
diagonal, i.e. the functions ψn are eigenfunctions of the physical quantity g
also. If, among the values fn, there are some which are equal (i.e. if there
are eigenvalues to which several different eigenfunctions correspond), then the
matrix elements gmn corresponding to each such group of functions ψn are,
in general, different from zero. However, linear combinations of the functions
ψn which correspond to a single eigenvalue of the quantity f are evidently
also eigenfunctions of f ; one can always choose these combinations in such a
way that the corresponding non-diagonal matrix elements gmn are zero, and
thus, in this case also, we obtain a set of functions which are simultaneously
the eigenfunctions of the operators f̂ and ĝ.

The following formula is useful in applications:(
∂H

∂λ

)
nn

=
∂En

∂λ
(11.16)

where λ is a parameter on which the Hamiltonian Ĥ (and therefore the energy
eigenvalues En) depends. It is proved as follows. Differentiating the equation
(Ĥ − En)ψn = 0 with respect to λ and then multiplying on the left by ψ∗

n,
we obtain

ψ∗
n(Ĥ − En)

∂ψn

∂λ
= ψ∗

n

(
∂En

∂λ
− ∂Ĥ

∂λ

)
ψn

On integration with respect to q, the left-hand side gives zero, since∫
ψ∗
n(Ĥ − En)

∂ψn

∂λ
dq =

∫
∂ψn

∂λ
(Ĥ − En)

∗ψ∗
ndq,

the operator Ĥ being Hermitian. The right-hand side gives the required
equation.

A widely used notation (introduced by Dirac) in recent literature is that
which denotes the matrix elements fnm by7)

⟨n|f |m⟩ (11.17)
7) Both notations are used in the present book. The form (11.17) is especially convenient

when each suffix has to be written as several letters.
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This symbol is written so that it may be regarded as “consisting” of the
quantity f and the symbols |m⟩ and ⟨n| which respectively stand for the ini-
tial and final states as such (independently of the representation of the wave
functions of the states). With the same symbols we can construct notations
for the expansion coefficients of wave functions: if there is a complete set
of wave functions corresponding to the states |n1⟩, |n2⟩, . . . , the coefficients
in the expansion in terms of these of the wave function of a state |m⟩ are
denoted by

⟨ni|m⟩ =
∫
ψ∗
ni
ψmdq. (11.18)

§ 12. Transformation of matrices

The matrix elements of a given physical quantity can be defined with
respect to various sets of wave functions, for example the wave functions
of stationary states described by various sets of physical quantities, or the
wave functions of stationary states of the same system in various external
fields. The problem therefore arises of the transformation of matrices from
one representation to another.

Let ψn(q) and ψ′
n(q) (n = 1, 2, . . . ) be two complete sets of orthonormal

functions, related by some linear transformation:

ψ′
n =

∑
m

Smnψm (12.1)

which is simply an expansion of the function ψ′
n in terms of the complete set

of functions ψn. This transformation may be conventionally written in the
operator form

ψ′
n = Ŝψn (12.2)

The operator Ŝ must satisfy a certain condition in order that the functions
ψ′
n should be orthonormal if the functions ψn are. Substituting (12.2) in the

condition ∫
ψ′∗
mψ

′
ndq = δnm

and using the definition of the transposed operator (3.14), we have∫
(Ŝψn)Ŝ

∗ψ∗
mdq =

∫
ψ∗
m
˜̂
S∗Ŝψndq = δnm

If these equations hold for all m and n, we must have ˜̂S∗Ŝ = 1, or˜̂
S∗ ≡ Ŝ† = Ŝ−1 (12.3)
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i.e. the inverse operator is equal to the Hermitian conjugate operator. Op-
erators having this property are said to be unitary. Owing to this property,
the transformation ψn = Ŝ−1ψ′

n inverse to (12.1) is given by

ψn =
∑
m

S∗
nmψ

′
m (12.4)

Writing the equations Ŝ†Ŝ = 1 and ŜŜ† = 1 in matrix form, we obtain the
following forms of the unitarity condition:∑

l

S∗
lmSln = δmn (12.5)

∑
l

S∗
mlSnl = δmn (12.6)

Let us now consider some physical quantity f and write down its matrix
elements in the “new” representation, i.e. with respect to the functions ψ′

n.
These are given by the integrals∫

ψ′∗
mf̂ψ

′
ndq =

∫
(Ŝ∗ψ∗

m)(f̂ Ŝψn)dq

=

∫
ψ∗
m
˜̂
S∗f̂ Ŝψndq =

∫
ψ∗
mŜ

−1f̂ Ŝψndq.

Hence we see that the matrix of the operator in the new representation
is equal to the matrix of the operator

f̂ ′ = Ŝ−1f̂ Ŝ (12.7)

in the old representation.8)
The sum of the diagonal elements of a matrix is called the trace or spur9)

of the matrix and denoted by trf :

trf =
∑
n

fnn (12.8)

8) If {f̂ , ĝ} = −iℏĉ is the commutation rule for two operators f̂ and ĝ, the transformation
(12.7) gives {f̂ ′, ĝ′} = −iℏĉ′, i.e. the rule is unchanged. We have shown in the footnote
in §9 that is the quantum analogue of the classical Poisson bracket [f, g]. In classical
mechanics, however, the Poisson brackets are invariant under canonical transformations
of the variables (generalized coordinates and momenta); see Mechanics, §45. In this sense
we can say that unitary transformations in quantum mechanics play a role analogous to
that of canonical transformations in classical mechanics.

9) From the German word Spur. The notation spf is also used. The trace can be
defined, of course, only if the sum over n is convergent.
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It may be noted first of all that the trace of a product of two matrices is
independent of the order of multiplication:

tr(fg) = tr(gf) (12.9)

since the rule of matrix multiplication gives

tr(fg) =
∑
n

∑
n

fnkgkn =
∑
k

∑
n

gknfnk = tr(gf).

Similarly we can easily see that, for a product of several matrices, the trace
is unaffected by a cyclic permutation of the factors; for example,

tr(fgh) = tr(hfg) = tr(ghf) (12.10)

An important property of the trace is that it does not depend on the
choice of the set of functions with respect to which the-matrix elements are
defined, since

(trf)′ = tr(S−1fS) = tr(S−1Sf) = trf (12.11)

A unitary transformation leaves unchanged the sum of the squared moduli
of the functions that are transformed: from (12.6) we have∑

i

|ψ′
i|2 =

∑
k,l,i

SkiψkS
∗
liψ

∗
l =

∑
k,l

ψkψ
∗
l δkl =

∑
k

|ψk|2. (12.12)

Any unitary operator may be written-as

Ŝ = eiR̂ (12.13)

where R̂ is an Hermitian operator: since R̂† = R̂ , we have

Ŝ† = e−iR̂†
= e−iR̂ = Ŝ−1

The expansion

f̂ ′ = Ŝ−1f̂ Ŝ = f̂ + {f̂ , iR̂}+ 1

2
{{f̂ , iR̂}, iR̂}+ . . . (12.14)

is easily verified by a direct expansion of the factors exp(±iR̂) in powers of R̂.
This expansion may be useful when R̂ is proportional to a small parameter,
so that (12.14) becomes an expansion in powers of the parameter.
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§ 13. The Heisenberg representation of operators

In the mathematical formalism of quantum mechanics described here,
the operators corresponding to various physical quantities act on functions
of the coordinates and do not usually depend explicitly on time. The time
dependence of the mean values of physical quantities is due only to the time
dependence of the wave function of the state, according to the formula

f(t) =

∫
Ψ∗(q, t)f̂Ψ(q, t)dq. (13.1)

The quantum-mechanical treatment can, however, be formulated also in
a somewhat different but equivalent form, in which the time dependence is
transferred from the wave functions to the operators. Although we shall not
use this Heisenberg representation (as opposed to the Schrödinger represen-
tation) of operators in the present volume, a statement of it is given here
with a view to applications in the relativistic theory.

We define the operator (which is unitary; see (12.13))

Ŝ = exp

(
− i

ℏ
Ĥt

)
, (13.2)

where Ĥ is the Hamiltonian of the system. By definition, its eigenfunctions
are the same as those of the operator Ĥ, i.e. the stationary-state wave
functions ψn(q), where

Ŝψn(q) = exp(− i

ℏ
Ent)ψn(q). (13.3)

Hence it follows that the expansion (10.3) of an arbitrary wave function Ψ
in terms of the stationary-state wave functions can be written in the operator
form

Ψ(q, t) = ŜΨ(q, 0), (13.4)

i.e. the effect of the operator Ŝ is to convert the wave function of the system
at some initial instant into the wave function at an arbitrary instant.

Defining, as in (12.7), the time-dependent operator

f̂(t) = Ŝ−1f̂ Ŝ (13.5)

we have
f(t) =

∫
Ψ∗(q, 0)f̂(t)Ψ(q, 0)dq, (13.6)
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and thus obtain the formula (3.8) for the mean value of the quantity f in
a form in which the time dependence is entirely transferred to the operator
(for our definition of an operator rests on formula (3.8)).

It is evident that the matrix elements of the operator (13.5) with respect
to the stationary-state wave functions are the same as the time-dependent
matrix elements fnm(t) defined by formula (11.3).

Finally, differentiating the expression (13.5) with respect to time (assum-
ing that the operators f̂ and Ĥ do not themselves involve t), we obtain

∂

∂t
f̂(t) =

i

ℏ

[
Ĥf̂(t)− f̂(t)Ĥ

]
, (13.7)

which is similar in form to (9.2) but has a somewhat different significance:
the expression (9.2) defines the operator ̂̇f corresponding to the physical
quantity ḟ , while the left-hand side of equation (13.7) is the time derivative
of the operator of the quantity f itself.

§ 14. The density matrix

The description of a system by means of a wave function is the most
complete description possible in quantum mechanics, in the sense indicated
at the end of §1.

States that do not allow such a description are encountered if we consider
a system that is part of a larger closed system. We suppose that the closed
system as a whole is in some state described by the wave function Ψ(q, x),
where x denotes the set of coordinates of the system considered, and q the
remaining coordinates of the closed system. This function in general does
not fall into a product of functions of x and of q alone, so that the system
does not have its own wave function.10)

Let f be some physical quantity pertaining to the system considered. Its
operator therefore acts only on the coordinates x, and not on q. The mean
value of this quantity in the state considered is

f =

∫∫
Ψ∗(q, x)f̂Ψ(q, x)dqdx. (14.1)

10) In order that Ψ(q, x) should (at a given instant) fall into such a product, the mea-
surement as a result of which this state was brought about must completely describe the
system considered and the remainder of the closed system separately. In order that Ψ(q, x)
should continue to have this form at subsequent instants, it is necessary in addition that
these parts of the closed system should not interact (see §2). Neither of these conditions
is now assumed.
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We introduce the function ρ(x, x′) defined by

ρ(x, x′) =

∫
Ψ(q, x)Ψ∗(q, x′)dq (14.2)

where the integration is extended only over the coordinates q; this function
is called the density matrix of the system. From the definition (14.2) it is
evident that the function is “Hermitian”:

ρ∗(x, x′) = ρ(x′, x) (14.3)

The “diagonal elements” of the density matrix

ρ(x, x) =

∫
|Ψ(q, x)|2dq

determine the probability distribution for the coordinates of the system.
Using the density matrix, we can write the mean value f in the form

f =

∫ [
f̂ρ(x, x′)x′=xdx

]
(14.4)

Here f̂ acts only on the variables x in the function ρ(x, x′); after calculating
the result of its action, we put x′ = x. We see that, if we know the density
matrix, we can calculate the mean value of any quantity characterizing the
system. It follows from this that, by means of ρ(x, x′), we can also determine
the probabilities of various values of the physical quantities in the system.
Thus the state of a system which does not have a wave function can be de-
scribed by means of a density matrix. This does not contain the coordinates
q which do not belong to the system concerned, though, of course, it depends
essentially on the state of the closed system as a whole.

The description by means of the density matrix is the most general form
of quantum-mechanical description of the system. The description by means
of the wave function, on the other hand, is a particular case of this, cor-
responding to a density matrix of the form ρ(x, x′) = Ψ(x)Ψ∗(x′). The
following important difference exists between this particular case and the
general one.11) For a state having a wave function there is always a com-
plete set of measuring processes such that they lead with certainty to definite
results (mathematically, this means that Ψ is an eigenfunction of some oper-
ator). For states having only a density matrix, on the other hand, there is no
complete set of measuring processes whose result can be uniquely predicted.

11) States having a wave function are called “pure” states, as distinct from “mixed”
states, which are described by a density matrix.
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Let us now suppose that the system is closed, or became so at some
instant. Then we can derive an equation giving the change in the density
matrix with time, similar to the wave equation for the Ψ function. The
derivation can be simplified by noticing that the required linear differential
equation for ρ(x, x′, t) must be satisfied in the particular case where the
system has a wave function, i.e.

ρ(x, x′, t) = Ψ(x, t)Ψ∗(x, t).

Differentiating with respect to time and using the wave equation (8.1), we
have

iℏ
∂ρ

∂t
= iℏΨ∗(x′, t)

∂Ψ(x, t)

∂t
+ iℏΨ(x, t)

∂Ψ∗(x′, t)

∂t
=

= Ψ∗(x′, t)ĤΨ(x, t)−Ψ(x, t)Ĥ ′∗Ψ∗(x′, t),

where Ĥ is the Hamiltonian of the system, acting on a function of x, and Ĥ ′

is the same operator acting on a function of x′. The functions Ψ∗(x′, t) and
Ψ(x, t) can obviously be placed behind the respective operators Ĥ and Ĥ ′,
and we thus obtain the required equation:

iℏ
∂ρ(x, x′, t)

∂t
= (Ĥ − Ĥ ′∗)ρ(x, x′, t). (14.5)

Let Ψn(x, t) be the wave functions of the stationary states of the system,
i.e. the eigenfunctions of its Hamiltonian. We expand the density matrix in
terms of these functions; the expansion consists of a double series in the form

ρ(x, x′, t) =
∑
m

∑
n

amnΨ
∗
n(x

′, t)Ψm(x, t)

=
∑
m

∑
n

ψ∗
n(x

′)ψm(x) exp

(
i

ℏ
(En − Em)t

)
. (14.6)

For the density matrix, this expansion plays a part analogous to that of the
expansion (10.3) for wave functions. Instead of the set of coefficients an, we
have here the double set of coefficients amn. These clearly have the property
of being “Hermitian”, like the density matrix itself:

a∗nm = amn. (14.7)

For the mean value of some quantity f we have, substituting (14.6) in (14.4),

f =
∑
m

∑
n

amn

∫
Ψ∗

n(x, t)f̂Ψm(x, t)dx,
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or

f =
∑
m

∑
n

amnfnm(t) =
∑
m

∑
n

amnfnm exp

(
i

ℏ
(En − Em)t

)
, (14.8)

where fnm are the matrix elements of the quantity f . This expression is
similar to formula (11.1).12)

The quantities amn must satisfy certain inequalities. The “diagonal ele-
ments” ρ(x, x) of the density matrix, which determine the probability distri-
bution for the coordinates, must obviously be positive quantities. It therefore
follows from the expression (14.6) (with x′ = x) that the quadratic form∑

n

∑
m

amnξ
∗
nξm

constructed with the coefficients amn (where the ξn are arbitrary complex
quantities) must be positive. This places certain conditions, known from
the theory of quadratic forms, on the quantities anm. In particular, all the
“diagonal” quantities must clearly be positive:

anm ⩾ 0 (14.9)

and any three quantities ann, amm and amn must satisfy the inequality

annamm ⩾ |amn|2 (14.10)

To the “pure” case, where the density matrix reduces to a product of
functions, there evidently corresponds a matrix amn of the form

amn = ama
∗
n. (14.11)

We shall indicate a simple criterion which enables us to decide, from the form
of the matrix amn, whether we are concerned with a “pure” or a “mixed”
state. In the pure case we have

(a2)mn =
∑
k

amkakn =
∑
k

a∗kama
∗
nak = ama

∗
n

∑
k

|ak|2 = ama
∗
n,

or
(a2)mn = amn, (14.12)

i.e. the density matrix is equal to its own square.
12) The quantities amn form the density matrix in the energy representation. The de-

scription of the states of a system by means of this matrix was introduced independently
by L. Landau and F. Bloch in 1927.
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§ 15. Momentum

Let us consider a closed system of particles not in an external field. Since
all positions in space of such a system as a whole are equivalent, we can say,
in particular, that the Hamiltonian of the system does not vary when the
system undergoes a parallel displacement over any distance. It is sufficient
that this condition should be fulfilled for an arbitrary small displacement.

An infinitely small parallel displacement over a distance δr signifies a
transformation under which the radius vectors ra of all the particles (a being
the number of the particle) receive the same increment δr : ra → ra + δr.
An arbitrary function ψ(r1, r2, . . . ) of the coordinates of the particles, under
such a transformation, becomes the function

ψ(r1 + δr, r2 + δr, . . . ) = ψ(r1, r2, . . . ) + δr ·
∑
a

∇aψ

= (1 + δr · ∇a)ψ(r1, r2, . . . )

(∇a denotes the operator of differentiation with respect to ra). The expres-
sion

1 + δr · ∇a

is the operator of an infinitely small displacement, which converts the func-
tion ψ(r1, r2, . . . ) into the function

ψ(r1 + δr, r2 + δr, . . . ).

The statement that some transformation does not change the Hamilto-
nian means that, if we make this transformation on the function Ĥψ, the
result is the same as if we make it only on the function ψ and then apply
the operator Ĥ. Mathematically, this can be written as follows. Let̂be
the operator which effects the transformation in question. Then we have
Ô(Ĥψ) = Ĥ(Ôψ), whence

ÔĤ − ĤÔ = 0

i.e. the Hamiltonian must commute with the operator Ô.
In the case considered, the operator Ô is the operator of an infinitely

small displacement. Since the unit operator (the operator of multiplying by
unity) commutes, of course, with any operator, and the constant factor δr
can be taken in front of Ĥ, the condition ÔĤ − ĤÔ = 0 reduces here to(∑

a

∇a

)
Ĥ − Ĥ

(∑
a

∇a

)
= 0 (15.1)
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As we know, the commutability of an operator (not containing the time
explicitly) with Ĥ means that the physical quantity corresponding to that
operator is conserved. The quantity whose conservation for a closed system
follows from the homogeneity of space is the momentum of the system (cf.
Mechanics, §7). Thus the relation (15.1) expresses the law of conservation
of momentum in quantum mechanics; the operator

∑
a ∇a must correspond,

apart from a constant factor, to the total momentum of the system, and each
term ∇a of the sum to the momentum of an individual particle.

The coefficient of proportionality between the operator p̂ of the momen-
tum of a particle and the operator ∇ can be determined by means of the
passage to the limit of classical mechanics, and is −iℏ:

p̂ = −iℏ∇ (15.2)

or, in components,

p̂x = −iℏ
∂

∂x
, p̂y = −iℏ

∂

∂y
, p̂z = −iℏ

∂

∂z

Using the limiting expression (6.1) for the wave function, we have

p̂ = iℏ
i

ℏ
Ψ∇S = Ψ∇S

i.e. in the classical approximation the effect of the operator reduces to multi-
plication by ∇S. The gradient ∇S of the action is the classical momentum
p of the particle (see Mechanics, §43).

It is easy to see that the operator (15.2) is Hermitian, as it should be.
For, with arbitrary functions ψ(x) and φ(x) which vanish at infinity, we have∫

φp̂xψdx = −iℏ
∫
φ
∂ψ

∂x
dx = iℏ

∫
ψ
∂φ

∂x
dx =

∫
ψp̂∗xφdx,

and this is the condition that the operator should be Hermitian.
Since the result of differentiating functions with respect to two different

variables is independent of the order of differentiation, it is clear that the
operators of the three components of momentum commute with one another:

p̂xp̂y − p̂yp̂x = 0, p̂xp̂z − p̂zp̂x = 0 p̂yp̂z − p̂zp̂y = 0 (15.3)

This means that all three components of the momentum of a particle can
simultaneously have definite values.

Let us find the eigenfunctions and eigenvalues of the momentum opera-
tors. They are determined by the vector equation

iℏ∇ψ = pψ (15.4)
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The solutions are of the form

ψ = C · eipr/ℏ (15.5)

where C is a constant. If all three components of the momentum are given
simultaneously, we see that this completely determines the wave function of
the particle. In other words, the quantities px, py, pz form one of the possible
complete sets of physical quantities for a particle. Their eigenvalues form a
continuous spectrum extending from −∞ to +∞.

According to the rule (5.4) for normalizing the eigenfunctions of a contin-
uous spectrum, the integral

∫
ψ∗
p′ψpdV taken over all space (dV = dxdydz)

must be equal to the delta function δ(p′ − p).13) However, for reasons that
will become clear from subsequent applications, it is more natural to normal-
ize the eigenfunctions of the particle momentum by the delta function of the
momentum difference divided by 2πℏ:∫

ψ∗
p′ψpdV =

(
p′ − p
2πℏ

)
or, equivalently, ∫

ψ∗
p′ψpdV = (2πℏ)3δ(p′ − p) (15.6)

(since each of the three factors in the three-dimensional delta function is
δ[(p′x − px)/2πℏ] = 2πℏδ(p′xpx), and so on).

The integration is effected by means of the formula14)

1

2π

∫ +∞

−∞
eiαξdξ = δ(α) (15.7)

This shows that the constant in (15.5) is equal to unity if the normalization
is according to (15.6):15)

ψp = eipr/ℏ (15.8)
13) The three-dimensional function δ(a) of a vector a is defined as a product of delta

functions of the components of the vector a: δ(a) = δ(ax)δ(ay)δ(az).
14) The conventional meaning of this formula is that the function on the left-hand side

has the property (5.8) of the delta function. Substituting δ(x− a) in the form (15.7), we
obtain from (5.8) the well-known Fourier integral formula

f(a) =

∫∫ ∞

−∞
f(x)eiξ(x−a)dx

dξ

2π

15) Note that with this normalization the probability density |Ψ|2 = 1, i.e. the function
is normalised to “one particle per unit volume”. This agreement of normalizations is, of
course, no accident; see the last footnote to §48.
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The expansion of an arbitrary wave function ψ(r) of a particle in terms
of the eigenfunctions ψp of its momentum operator is simply the expansion
as a Fourier integral:

ψ(r) =

∫
a(p)ψp(r)

d3p

(2πℏ)3
=

∫
a(p)eip·r/ℏ

d3p

(2πℏ)3
(15.9)

(where d3p = dpxdpydpz). The expansion coefficients a(p) are, according to
formula (5.3),

a(p) =

∫
ψ(r)ψ∗

p(r)dV =

∫
ψ(r)e−ip·r/ℏdV (15.10)

The function a(p) can be regarded (see §5) as the wave function of the particle
in the “momentum representation”;

|a(p)|2 d3p

(2πℏ)3

is the probability that the momentum has a value in the interval d3p.
Just as the operator p̂ corresponds to the momentum, determining its

eigenfunctions in the coordinate representation, we can introduce the opera-
tor r̂ of the coordinates of the particle in the momentum representation. It
must be defined so that the mean value of the coordinates can be represented
in the form

r =

∫
a∗(p)r̂a(p)

d3p

(2πℏ)3
(15.11)

On the other hand, this mean value is determined from the wave function
ψ(r) by

r =

∫
ψ∗rψdV.

Substituting ψ(r) in the form (15.9) we have (integrating by parts)

rψ(r) =

∫
ra(p)eip·r/ℏ

d3p

(2πℏ)3
=

∫
iℏeip·r/ℏ

∂a(p)

∂p

d3p

(2πℏ)3

Using this expression and (15.10), we find

r =

∫∫
ψ∗(r)iℏ

∂a(p)

∂p
eip·r/ℏdV

d3p

(2πℏ)3
=

∫
iℏa∗(p)

∂a(p)

∂p

d3p

(2πℏ)3

Comparing with (15.11), we see that the radius vector operator in the mo-
mentum representation is

r̂ = iℏ
∂

∂p
(15.12)



Chap. II ENERGY AND MOMENTUM 53

The momentum operator in this representation reduces simply to multipli-
cation by p.

Finally, we shall express in terms of p̂ the operator of a parallel displace-
ment in space over any finite (not only infinitesimal) distance a. By the
definition of this operator (T̂a) we must have

T̂aψ(r) = ψ(r + a).

Expanding the function ψ(r + a) in a Taylor series, we have

ψ(r + a) = ψ(r) + a · ∂ψ(r)
∂r

+ . . . ,

or, introducing the operator p̂ = iℏ∇,

ψ(r + a) =

[
1 +

i

ℏ
a · p̂+

1

2

(
i

ℏ
a · p̂

)2

+ . . .

]
ψ(r).

The expression in brackets is the operator

T̂a = exp

(
i

ℏ
a · p̂

)
(15.13)

This is the required operator of the finite displacement.

§ 16. Uncertainty relations

Let us derive the rules for commutation between momentum and coordi-
nate operators. Since the result of successively differentiating with respect
to one of the variables x, y, z and multiplying by another of them does not
depend on the order of these operations, we have

p̂xy − yp̂x = 0, p̂xz − zp̂x = 0 (16.1)

and similarly for p̂y, p̂z.
To derive the commutation rule for p̂x and x, we write

(p̂xx− xp̂x)ψ = −iℏ
∂

∂x
(xψ) + iℏx

∂ψ

∂x
= iℏψ

We see that the result of the action of the operator p̂xx − xp̂x reduces to
multiplication by iℏ; the same is true, of course, of the commutation of p̂y
with y and p̂z with z. Thus we have16)

p̂x − xp̂x = −iℏ, p̂y − yp̂ = −iℏ, p̂xx− xp̂x = −iℏ (16.2)
16) These relations, discovered in matrix form by Heisenberg in 1925, formed the genesis

of quantum mechanics.
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All the relations (16.1) and (16.2) can be written jointly in the form

p̂ixk − xkp̂i = −iℏδik, (i, k = x, y, z) (16.3)

Before going on to examine the physical significance of these relations
and their consequences, we shall set down two formulae which will be useful
later. Let f(r) be some function of the coordinates. Then

p̂f(r)− f(r)p̂ = −iℏ∇f (16.4)

For
(p̂f − f p̂)ψ = −iℏ[∇(fψ)− f∇ψ] = −iℏψ∇f

A similar relation holds for the commutator of r with a function of the
momentum operator:

f(p̂)r − rf(p̂) = −iℏ
∂f

∂p
(16.5)

It can be derived in the same way as (16.4) if we calculate in the momentum
representation, using the expression (15.12) for the coordinate operators.

The relations (16.1) and (16.2) show that the coordinate of a particle
along one of the axes can have a definite value at the same time as the
components of the momentum along the other two axes; the coordinate and
momentum component along the same axis, however, cannot exist simulta-
neously. In particular, the particle cannot be at a definite point in space and
at the same time have a definite momentum p.

Let us suppose that the particle is in some finite region of space, whose di-
mensions along the three axes are (of the order of magnitude of) ∆x, ∆y, ∆z.
Also, let the mean value of the momentum of the particle be p0. Mathemati-
cally, this means that the wave function has the form ψ = u(r)eip0r/ℏ, where
u(r) is a function which differs considerably from zero only in the region of
space concerned. We expand the function ψ in terms of the eigenfunctions
of the momentum operator (i.e. as a Fourier integral). The coefficients a(p)
in this expansion are determined by the integrals (15.10) of functions of the
form u(r)ei(p0−p)r/ℏ. If this integral is to differ considerably from zero, the
periods of the oscillatory factor ei(p0−p)r/ℏ must not be small in comparison
with the dimensions ∆x, ∆y, ∆z of the region in which the function u(r)
is different from zero. This means that a(p) will be considerably different
from zero only for values of p such that (p0x − px)∆x/ℏ ≲ 1, etc. Since
|a(p)|2 determines the probability of the various values of the momentum,
the ranges of values of px, py, pz in which a(p) differs from zero are just those
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in which the components of the momentum of the particle may be found, in
the state considered. Denoting these ranges by ∆px, ∆py, ∆pz, we thus have

∆px∆x ∼ ℏ, ∆py∆y ∼ ℏ, ∆pz∆z ∼ ℏ (16.6)

These relations, known as the uncertainty relations, were obtained by Heisen-
berg in 1927.

We see that, the greater the accuracy with which the coordinate of the
particle is known (i.e. the less ∆x), the greater the uncertainty ∆px in
the component of the momentum along the same axis, and vice versa. In
particular, if the particle is at some completely definite point in space (∆x =
∆y = ∆z = 0), then ∆px = ∆py = ∆pz = ∞. This means that all values
of the momentum are equally probable. Conversely, if the particle has a
completely definite momentum p, then all positions of it in space are equally
probable (this is seen directly from the wave function (15.8), whose squared
modulus is quite independent of the coordinates).

If the uncertainties of the coordinates and momenta are specified by the
standard deviations

δx =

√
(x− x)2, δpx =

√
(x− x)2,

we can specify exactly the least possible value of their product (H. Weyl).
Let us consider the one-dimensional case of a wave packet with wave function
ψ(x) depending on only one coordinate, and assume for simplicity that the
mean values of x and px in this state are zero. We consider the obvious
inequality ∫ ∞

−∞

∣∣∣∣αxψ +
dψ

dx

∣∣∣∣2 dx ⩾ 0

where α is an arbitrary real constant. On calculating this integral, noticing
that ∫ ∞

−∞
x2|ψ|2dx = (δx)2,

∫ (
x
dψ∗

dx
ψ + xψ∗dψ

dx

)
dx =

∫
x
d|ψ|2

dx
dx = −

∫
|ψ|2dx = −1,

∫
dψ∗

dx

dψ

dx
dx = −

∫
ψ∗d

2ψ

dx2
dx =

1

ℏ2

∫
ψ∗p̂2xψdx =

1

ℏ2
(δpx)

2,

we obtain
α2(δx)2 − α +

(δpx)
2

ℏ2
⩾ 0
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If this quadratic (in α) trinomial is positive for all α, its discriminant must
be negative, which gives the inequality

δxδpx ⩾ 0 (16.7)

The least possible value of the product is ℏ/2, and occurs for wave packets
with wave functions of the form

ψ =
1

(2π)1/4
√
δx

exp

(
i

ℏ
p0x−

x2

4(δx)2

)
(16.8)

where p0 and δx are constants. The probabilities of the various values of the
coordinates in such a state are

|ψ|2 = 1√
2πδx

exp

(
− x2

2(δx)2

)
and thus have a Gaussian distribution about the origin (the mean value
x = 0) with standard deviation δx. The wave function in the momentum
representation is

a(px) =

∫ ∞

−∞
ψ(x) exp

(
−i
pxx

ℏ

)
dx

Calculation of the integral gives

a(px) = const · exp
(
−(δx)2(px − p0)

2

ℏ2

)
.

The distribution of probabilities of values of the momentum, |a(px)|2, is also
Gaussian about the mean value px = p0, with standard deviation δpx =
ℏ/2δx, so that the product δpxδx is indeed ℏ/2.

Finally, we shall derive another useful relation. Let f and g be two
physical quantities whose operators obey the commutation rule

f̂ ĝ − ĝf̂ = −iℏĉ (16.9)

where ĉ is the operator of some physical quantity c. On the right-hand side
of the equation the factor ℏ is introduced in accordance with the fact that in
the classical limit (i.e. as ℏ → 0) all operators of physical quantities reduce
to multiplication by these quantities and commute with one another. Thus,
in the “quasi-classical” case, we can, to a first approximation, regard the
right-hand side of equation (16.9) as being zero. In the next approximation,
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the operator � can be replaced by the operator of simple multiplication by
the quantity c. We then have

f̂ ĝ − ĝf̂ = −iℏc.

This equation is exactly analogous to the relation p̂xx− xp̂x = −iℏ, the only
difference being that, instead of the constant ℏ, we have17) the quantity ℏc.
We can therefore conclude, by analogy with the relation ∆x∆px ∼ ℏ, that
in the quasi-classical case there is an uncertainty relation

∆f∆g ∼ ℏc (16.10)

for the quantities f and g.
In particular, if one of these quantities is the energy(f̂ ≡ Ĥ) and the

operator (ĝ) of the other does not depend explicitly on the time, then by 9.2
c = ġ, and the uncertainty relation in the quasi-classical case is

∆E∆g ∼ ℏġ. (16.11)

17) The classical quantity c is the Poisson bracket of the quantities f and g; see the
footnote in §9.
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CHAPTER III

SCHRÖDINGER’S EQUATION

§ 17. Schrödinger’s equation

The form of the wave equation of a physical sysytem is detemined by
its Hamiltonian, which is therefore of fundamental significance in the whole
mathematical fomulation of quantum mechanics.

The form of the Hamiltonian for a free particle is established by the gen-
eral requirements imposed by the homogeneity and isotropy of space and
by Galileo’s relativity principle. In classical mechanics, these requirements
lead to a quadratic dependence of the energy of the particle on its momen-
tum: E = p2/2m, where the constant m is called the mass of the particle
(see Mechanics, §4). In quantum mechanics, the same requirements lead to
a corresponding relation for the energy and momentum eigenvalues, these
quantities being conserved and simultaneously measurable (for a free parti-
cle).

If the relation E = p2/2m holds for every eigenvalue of the energy and
momentum, the same relation must hold for their operators also:

Ĥ =
1

2m

(
p̂2x + p̂2y + p̂2z.

)
(17.1)

Substituting here from (15.2), we obtain the Hamiltonian of a freely moving
particle in the form

Ĥ = − ℏ
2m

∆ (17.2)

where ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian operator.
The Hamiltonian of a system of non-interacting particles is equal to the

sum of the Hamiltonians of the separate particles:

Ĥ = −ℏ2

2

∑
a

∆a

ma

(17.3)

59
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(the suffix a is the number of the particle; ∆a is the Laplacian operator
in which the differentiation is with respect to the coordinates of the ath
particle).

In classical (non-relativistic) mechanics, the interaction of particles is
described by an additive term in the Hamiltonian, the potential energy of
the interaction U(r1, r2, . . . ), which is a function of the coordinates of the
particles. By adding a similar function to the Hamiltonian of the system, the
interaction of particles can be represented in quantum mechanics1) :

Ĥ = −ℏ2

2

∑
a

∆a

ma

+ U(r1, r2, . . . ). (17.4)

The first term can be regarded as the operator of the kinetic energy and the
second as that of the potential energy. In particular, the Hamiltonian for a
single particle in an external field is

Ĥ =
p̂2

2m
+ U(x, y, z) = − ℏ2

2m
∆+ U(x, y, z), (17.5)

where U(x, y, z) is the potential energy of the particle in the external field.
Substituting the expressions (17.2) to (17.5) in the general equation (8.1),

we obtain the wave equations for the corresponding systems. We shall write
out here the wave equation for a particle in an external field:

iℏ
∂Ψ

∂t
= − ℏ2

2m
∆Ψ+ U(x, y, z) (17.6)

The equation (10.2), which determines the stationary states, takes the
form

ℏ2

2m
∆ψ + [E − U(x, y, z)]ψ = 0 (17.7)

The equations (17.6) and (17.7) were obtained by Schrödinger in 1926 and
are called Schrödinger’s equations.

For a free particle, equation (17.7) has the form

ℏ2

2m
∆ψ + Eψ = 0 (17.8)

This equation has solutions finite in all space for any positive value of the
energy E. For states with definite directions of motion, these solutions are

1) This statement is, of course, not a logical consequence of the basic principles of
quantum mechanics, and is to be regarded as a deduction from experiment.
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eigenfunctions of the momentum operator, with E = p2/2m. The complete
(time-dependent) wave functions of such stationary states are

Ψ = const · exp
(
i

ℏ
(Et− pr)

)
. (17.9)

Each such function, a plane wave, describes a state in which the particle
has a definite energy E and momentum p. The angular frequency of this
wave is E/ℏ and its wave vector k = p/ℏ; the corresponding wavelength
2πℏ/p is called the de Broglie wavelength of the particle.2)

The energy spectrum of a freely moving particle is thus found to be
continuous, extending from zero to +∞. Each of these eigenvalues (except
E = 0) is degenerate, and the degeneracy is infinite. For there corresponds
to every value of E, different from zero, an infinite number of eigenfunctions
(17.9), differing in the direction of the vector p, which has a constant absolute
magnitude.

Let us enquire how the passage to the limit of classical mechanics occurs
in Schrödinger’s equation, considering for simplicity only a single particle in
an external field. Substituting in Schrödinger’s equation (17.6) the limiting
expression (6.1) for the wave function,Ψ = aeiS/ℏ , we obtain, on performing
the differentiation,

a
∂S

∂t
− iℏ

∂a

∂t
+

a

2m
(∇S)2 − iℏ

2m
a∆S − iℏ

m
∇S∇a− ℏ2

2m
∆a+ Ua = 0.

In this equation there are purely real and purely imaginary terms (we
recall that S and a are real); equating each separately to zero, we obtain two
equations

∂S

∂t
+

1

2m
(∇S)2 + U − ℏ2

2ma
∆a = 0,

∂a

∂t
+

a

2m
∆S +

1

m
∇S∇a = 0.

Neglecting the term containing ℏ in the first of these equations, we obtain

∂S

∂t
+

1

2m
(∇S)2 + U = 0, (17.10)

that is; the classical Hamilton—Jacobi equation for the action S of a particle,
as it should be. We see, incidentally, that, as ℏ → 0 , classical mechanics
is valid as far as quantities of the first (and not only the zero) order in ħ
inclusive.

2) The idea of a wave related to a particle was first introduced by L. de Broglie in 1924.
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The second equation obtained above, on multiplication by 2a, can be
rewritten in the form

∂a2

∂t
+ div

(
a2

∇S
m

)
= 0 (17.11)

This equation has an obvious physical meaning: a2 is the probability den-
sity for finding the particle at some point in space(|Ψ|2 = a2);∇S/m = p/m
is the classical velocity v of the particle. Hence equation (17.11) is simply
the equation of continuity, which shows that the probability density “moves”
according to the laws of classical mechanics with the classical velocity v at
every point.

PROBLEM
Find the transformation law for the wave function in a Galilean transformation.
SOLUTION.Let us apply the transformation to the wave function for free

motion of a particle (a plane wave). Since any function Ψ can be expanded in
plane waves, this will also give the transformation law for any wave function.

The plane waves in the frames of reference K and K ′ (K ′ moving with velocity
V relative to K) are

Ψ(r, t) = const · exp [i(pr − Et)/ℏ] ,

Ψ′(r′, t) = const · exp
[
i(p′r′ − E′t)/ℏ

]
,

where r = r′+V t; the particle momenta and energies in the two frames are related
by

p = p′ +mV , E = E′ + V p′ +mV 2/2

(see Mechanics, §8). Substitution of these expressions in Ψ gives

Ψ(r, t) = Ψ′(r′, t) exp

[
i

ℏ

(
mV r′ +

mV 2

2
t

)]
=

= Ψ′(r − V t, t) exp
[
i

ℏ

(
mV r − mV 2

2
t

)]
. (1)

This formula does not contain the parameters of the free motion of the particle,
and gives the required general transformation law for the wave function of any
state of the particle. For a system of particles, the exponent in (1) contains a
summation over the particles.

§ 18. The fundamental properties of Schrödinger’s
equation

The conditions which must be satisfied by solutions of Schrödinger’s equa-
tion are very general in character. First of all, the wave function must be
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single-valued and continuous in all space. The requirement of continuity is
maintained even in cases where the field U(x, y, z) itself has a surface of dis-
continuity. At such a surface both the wave function and its derivatives must
remain continuous. The continuity of the derivatives, however, does not hold
if there is some surface beyond which the potential energy U becomes infi-
nite. A particle cannot penetrate at all into a region of space where U = ∞,
i.e. we must have ψ = 0 everywhere in this region. The continuity of ψ
means that ψ vanishes at the boundary of this region; the derivatives of ψ,
however, in general are discontinuous in this case.

If the field U(x, y, z) nowhere becomes infinite, then the wave function
also must be finite in all space. The same condition must hold in cases where
U becomes infinite at some point but does so only as 1/rs with s < 2 (see
also §35).

Let Umin be the least value of the function U(x, y, z). Since the Hamil-
tonian of a particle is the sum of two terms, the operators of the kinetic
energy T̂ and of the potential energy, the mean value E of the energy in
any state is equal to the sum T + U . But all the eigenvalues of the operator
T̂ (which is the Hamiltonian of a free particle) are positive; hence the mean
value T ⩾ 0. Recalling also the obvious inequality U > Umin, we find that
E > Umin. Since this inequality holds for any state, it is clear that it is valid
for all the eigenvalues of the energy:

En > Umin (18.1)

Let us consider a particle moving in an external field which vanishes at infin-
ity; we define the function U(x, y, z), in the usual way, so that it vanishes at
infinity. It is easy to see that the spectrum of negative eigenvalues of the en-
ergy will then be discrete, i.e. all states with E < 0 in a field which vanishes
at infinity are bound states. For, in the stationary states of a continuous
spectrum, which correspond to infinite motion, the particle reaches infinity
(see §10); however, at sufficiently large distances the field may be neglected,
the motion of the particle may be regarded as free, and the energy of a freely
moving particle can only be positive.

The positive eigenvalues, on the other hand, form a continuous spectrum
and correspond to an infinite motion; for E > 0, Schrödinger’s equation
in general has no solutions (in the field concerned) for which the integral∫
|ψ|2dV converges.3)

Attention must be drawn to the fact that, in quantum mechanics, a parti-
cle in a finite motion may be found in those regions of space where E < U ; the

3) However, it must be mentioned that, for some particular mathematical forms of the
function U (x, y, z) (which have no physical significance), a discrete set of values may be
absent from the otherwise continuous spectrum.
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probability |ψ|2 of finding the particle tends rapidly to zero as the distance
into such a region increases, yet it differs from zero at all finite distances.
Here there is a fundamental difference from classical mechanics, in which a
particle cannot penetrate into a region where U > E. In classical mechanics
the impossibility of penetrating into this region is related to the fact that, for
E < U , the kinetic energy would be negative, that is, the velocity would be
imaginary. In quantum mechanics, the eigenvalues of the kinetic energy are
likewise positive; nevertheless, we do not reach a contradiction here, since, if
by a process of measurement a particle is localized at some definite point of
space, the state of the particle is changed, as a result of this process, in such
a way that it ceases in general to have any definite kinetic energy.

If U(x, y, z) > 0 in all space(and U → 0 at infinity), then, by the inequal-
ity (18.1), we have En > 0. Since, on the other hand, for E > 0 the spectrum
must be continuous, we conclude that, in this case, the discrete spectrum is
absent altogether, i.e. only an infinite motion of the particle is possible.

Let us suppose that, at some point (which we take as origin), U tends to
−∞ in the manner

U ≈ −αr−s, α > 0. (18.2)

We consider a wave function finite in some small region (of radius r0) about
the origin, and equal to zero outside this region. The uncertainty in the
values of the coordinates of a particle in such a wave packet is of the order
of r0; hence the uncertainty in the value of the momentum is ∼ ℏ/r0. The
mean value of the kinetic energy in this state is of the order of ℏ2/mr20, and
the mean value of the potential energy is ∼ −α/rs0. Let us first suppose that
s < 2. Then the sum

h2/mr20 − α/rs0

takes arbitrarily larpe negative values for sufficiently small r0. If, however,
the mean energy can take such values, this always means that the energy has
negative eigenvalues which are arbitrarily large in absolute value. The motion
of the particle in a very small region of space near the origin corresponds to
the energy levels with large |E|. The “normal” state corresponds to a particle
at the origin itself, i.e. the particle “falls” to the point r = 0.

If, however, s < 2, the energy cannot take arbitrarily large negative values.
The discrete spectrum begins at some finite negative value. In this case the
particle does not fall to the centre. It should be mentioned that, in classical
mechanics, the fall of a particle to the centre would be possible in principle in
any attractive field (i.e. for any positive s). The case s = 2 will be specially
considered in §35.

Next, let us investigate how the nature of the energy spectrum depends on
the behaviour of the field at large distances. We suppose that, as r → ∞, the



Chap. III SCHRÖDINGER’S EQUATION 65

potential energy, which is negative, tends to zero according to the power law
(18.2) (r is now large in this formula), and consider a wave packet “filling”
a spherical shell of large radius r0 and thickness ∆r ≪ r0. Then the order
of magnitude of the kinetic energy is again ℏ2/m(∆r)2, and of the potential
energy, −α/rs0. We increase r0, at the same time increasing ∆r, in such a
way that ∆r increases proportionally to r0. If s < 2, then the sum becomes
negative for sufficiently large r0. Hence it follows that there are stationary
states of negative energy, in which the particle may be found, with a fair
probability, at large distances from the origin. This, however, means that
there are levels of arbitrarily small negative energy (it must be recalled that
the wave functions rapidly tend to zero in the region of space where U > E).
Thus, in this case, the discrete spectrum contains an infinite number of levels,
which become denser and denser towards the level E = 0.

If the field diminishes as −1/rs at infinity, with s > 2, then there are not
levels of arbitrarily small negative energy. The discrete spectrum terminates
at a level with a non-zero absolute value, so that the total number of levels
is finite.

Schrödinger’s equation for the wave functions ψ of stationary states is
real, as are the conditions imposed on its solution. Hence its solutions can
always be taken as real.4) The eigenfunctions of non-degenerate values of the
energy are automatically real, apart from the unimportant phase factor. For
ψ∗ satisfies the same equation as ψ, and therefore must also be an eigenfunc-
tion for the same value of the energy; hence, if this value is not degenerate, ψ
and ψ∗ must be essentially the same, i.e. they can differ only by a constant
factor (of modulus unity). The wave functions corresponding to the same
degenerate energy level need not be real, however, but by a suitable choice
of linear combinations of them we can always obtain a set of real functions.

The complete (time-dependent) wave functions Ψ are determined by an
equation in whose coefficients i appears. This equation, however, retains the
same form if we replace t in it by −t and at the same time take the complex
conjugate.5) Hence we can always choose the functions Ψ in such a way that
Ψ and Ψ∗ differ only by the sign of the time.

As is well known, the equations of classical mechanics are unchanged by
time reversal, i.e. when the sign of the time is reversed. In quantum mechan-
ics, the symmetry with respect to the two directions of time is expressed, as
we see, in the invariance of the wave equation when the sign of t is changed
and Ψ is simultaneously replaced by Ψ∗. However, it must be recalled that

4) These assertions are not valid for systems in a magnetic field.
5) It is assumed that the potential energy U does not depend explicitly on the time: the

system is either closed or in a constant (non-magnetic) field.
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this symmetry here relates only to the equation, and not to the concept of
measurement itself, which plays a fundamental part in quantum mechanics
(as we have explained in detail in §7).

§ 19. The current density

In classical mechanics the velocity v of a particle is related to its mo-
mentum by p = mv. A similar relation holds between the corresponding
operators in quantum mechanics, as we should expect. This is easily shown
by calculating the operator by the general rule (9.2) for the differentiation of
operators with respect to time:

v̂ =
i

ℏ

(
Ĥr − rĤ

)
.

Using the expression (17.5) for Ĥ and formula (16.5), we obtain

v̂ = p/m (19.1)

Similar relations will clearly hold between the eigenvalues of the velocity and
momentum, and between their mean values in any state.

The velocity, like the momentum of a particle, cannot have a definite
value simultaneously with the coordinates. But the velocity multiplied by
an infinitely short time interval dt gives the displacement of the particle in
the time dt. Hence the fact that the velocity cannot exist at the same time
as the coordinates means that, if the particle is at a definite point in space
at some instant, it has no definite position at an infinitely close subsequent
instant.

We may notice a useful formula for the operator ̂̇f of the derivative, with
respect to time, of some quantity f(r) which is a function of the radius vector
of the particle. Bearing in mind that f commutes with U(r), we find

̂̇f =
i

ℏ

(
Ĥf − fĤ

)
=

i

2mℏ
(
p̂2f − f p̂2

)
.

Using (16.4), we can write

p̂2f = p̂(f p̂− iℏ∇f), f p̂2 = (p̂f − iℏ∇f)p̂

Thus we obtain the required expression:

̂̇f =
1

2m
(p̂∇f +∇f · p̂) (19.2)
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Next, let us find the acceleration operator. We have

̂̇v =
i

ℏ

(
Ĥv̂ − v̂Ĥ

)
=

i

mℏ

(
Ĥp̂− p̂Ĥ

)
=

i

mℏ
(U p̂− p̂U)

Using formula (16.4), we find

m̂̇v = −∇U. (19.3)

This operator equation is exactly the same in form as the equation of motion
(Newton’s equation) in classical mechanics.

The integral
∫
|Ψ|2dV , taken over some finite volume V , is the probability

of finding the particle in this volume. Let us calculate the derivative of this
probability with respect to time. We have

d

dt

∫
|Ψ|2dV =

∫ (
Ψ
∂Ψ∗

∂t
+Ψ∗∂Ψ

∂t

)
dV =

i

ℏ

∫ (
ΨĤ∗Ψ∗ −Ψ∗ĤΨ

)
dV.

Substituting here

Ĥ = Ĥ∗ = − ℏ2

2m
∆+ U(x, y, z)

and using the identity

Ψ∆Ψ∗ −Ψ∗∆Ψ = div (Ψ∇Ψ∗ −Ψ∗∇Ψ)

we obtain
d

dt

∫
|Ψ|2dV = −

∫
divjdV

where j denotes the vector6)

j =
iℏ
2m

(Ψ∇Ψ∗ −Ψ∗∇Ψ) =
1

2m
(Ψp̂∗Ψ∗ +Ψ∗p̂Ψ). (19.4)

The integral of divj can be transformed by Gauss’s theorem into an integral
over the closed surface which bounds the volume V:

d

dt

∫
|Ψ|2dV = −

∮
jdf (19.5)

6) If ψ is written as |ψ|eiα, then

j =
ℏ
m
|ψ|2∇α (19.4a)
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It is seen from this that the vector j may be called the probability current
density vector, or simply the current density. The integral of this vector over
a surface is the probability that the particle will cross the surface during unit
time. The vector j and the probability density |Ψ|2 satisfy the equation

∂|Ψ|2

∂t
+ divj = 0 (19.6)

which is analogous to the classical equation of continuity.
The wave function of free motion (the plane wave (17.9)) can be normal-

ized so as to describe a flow of particles with unit current density (in which,
on average, one particle crosses a unit cross-section of the flow per unit time).
This function is then

Ψ =
1√
v
exp

[
− i

ℏ
(Et− pr)

]
, (19.7)

where v is the velocity of the particle, since substitution of this in (19.4) gives
j = p/mv, i.e. a unit vector in the direction of the motion.

It is useful to show how the orthogonality of the wave functions of states
with different energies follows immediately from Schrödinger’s equation. Let
ψm and ψn be two such functions; they satisfy the equations

− ℏ2

2m
∆ψm + Uψm = Emψm,

− ℏ2

2m
∆ψ∗

n + Uψ∗
n = Enψ

∗
n.

We multiply the first of these by ψ∗
n and the second by ψm and subtract

corresponding terms; this gives

(Em − En)ψmψ
∗
n =

ℏ2

2m
(ψm∆ψ

∗
n − ψ∗

n∆ψm) =
ℏ2

2m
div(ψm∇ψ∗

n − ψ∗
n∇ψm).

If we now integrate both sides of this equation over all space, the right-hand
side, on transformation by Gauss’s theorem, reduces to zero, and we obtain

(Em − En)

∫
ψmψ

∗
ndV = 0,

whence, by the hypothesis Em ̸= En, there follows the required orthogonality
relation ∫

ψmψ
∗
ndV = 0.
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§ 20. The variational principle

SchrÖdinger’s equation, in the general form Ĥψ = Eψ, can be obtained
from, the variational principle

δ

∫
ψ∗(Ĥ − E)ψdq = 0 (20.1)

Since ψ is complex, we can vary ψ and ψ∗ independently. Varying ψ∗, we
have ∫

δψ∗(Ĥ − E)ψdq = 0

whence, because δψ∗ is arbitrary, we obtain the required equation Ĥψ = Eψ.
The variation of ψ gives nothing different. For, varying ψ and using the fact
that the operator Ĥ is Hermitian, we have∫

ψ∗(Ĥ − E)δψdq =

∫
δψ(Ĥ∗ − E)ψ∗dq = 0

from which we obtain the complex conjugate equation Ĥ∗ψ∗ = Eψ∗.
The variational principle (20.1) requires an unconditional extremum of

the integral. It can be stated in a different form by regarding E as a La-
grangian multiplier in a problem with the conditional extremum requirement

δ

∫
ψ∗Ĥψdq = 0 (20.2)

the condition being ∫
ψψ∗dq = 1 (20.3)

The least value of the integral in (20.2) (with the condition (20.3)) is the
first eigenvalue of the energy, i.e. the energy E0 of the normal state. The
function ψ which gives this minimum is accordingly the wave function ψ0 of
the normal state.7) The wave functions ψn(n > 0) of the other stationary
states correspond only to an extremum, and not to a true minimum of the
integral.

In order to obtain, from the condition that the integral in (20.2) is a mini-
mum, the wave function ψ1 and the energy E1 of the state next to the normal
one, we must restrict our choice to those functions ψ which satisfy not only
the normalization condition (20.3) but also the condition of orthogonality

7) In the rest of this section we shall suppose the wave functions ψ to be real; they can
always be so chosen (if there is no magnetic field).
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with the wave function ψ0 of the normal state:
∫
ψψ0dq = 0. In general, if

the wave functions ψ0, ψ1, . . . , ψn−1 of the first n states (arranged in order
of increasing energy) are known, the wave function of the next state gives a
minimum of the integral in (20.2) with the additional conditions∫

ψ2dq = 1,

∫
ψψmdq = 0 m = 0, 1, 2, . . . , n− 1. (20.4)

We shall give here some general theorems which can be proved from the
variational principle.8)

The wave function ψ0 of the normal state does not become zero (or, as we
say, has no nodes) for any finite values of the coordinates.9) In other words,
it has the same sign in all space. Hence, it follows that the wave functions
ψn(n > 0) of the other stationary states, being orthogonal to ψ0, must have
nodes (if ψn is also of constant sign, the integral

∫
ψ0ψndq cannot vanish).

Next, from the fact that ψ0 has no nodes, it follows that the normal
energy level cannot be degenerate. For, suppose the contrary to be true, and
let ψ0, ψ′

0 be two different eigenfunctions corresponding to the level E0. Any
linear combination cψ0 + c′ψ′

0 will also be an eigenfunction; but by choosing
the appropriate constants c, c′, we can always make this function vanish at
any given point in space, i.e. we can obtain an eigenfunction with nodes.

If the motion takes place in a bounded region of space, we must have
ψ = 0 at the boundary of this region (see §18). To determine the energy
levels, it is necessary to find, from the variational principle, the minimum
value of the integral in (20.2) with this boundary condition. The theorem
that the wave function of the normal state has no nodes means in this case
that ψ0 does not vanish anywhere inside this region.

We notice that, as the dimensions of the region containing the motion
increase, all the energy levels En decrease; this follows immediately from the
fact that an extension of the region increases the range of functions which
can make the integral a minimum, and consequently the least value of the
integral can only diminish.

The expression∫
ψĤψdq =

∫ [
−
∑
a

ℏ2

2ma

ψ∆aψ + Uψ2

]
dq

8) The proof of theorems concerning the zeros of eigenfunctions (see also §21) is given by
M. A. Lavrent’ev and L. A. Lyusternik, The Calculus of Variations (Kurs variatsionnogo
ischislemya), 2nd edition, chapter IX, Moscow, 1950; R. Courant and D. Hilbert, Methods
of Mathematical Physics, volume I, chapter VI, Interscience, New York, 1953.

9) This theorem and its consequences are not in general valid for the wave functions of
systems consisting of several identical particles (see the end of §63).
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for the states of the discrete spectrum of a particle system may be trans-
formed into another expression which is more convenient in practice. In the
first term of the integrand we write

ψ∆aψ = diva(ψ∇aψ)− (∇aψ)
2.

The integral of diva(ψ∇aψ) over all space is transformed into an integral
over an infinitely distant closed surface, and since the wave functions of the
states of a discrete spectrum tend to zero sufficiently rapidly at infinity, this
integral vanishes. Thus∫

ψĤψdq =

∫ [∑
a

ℏ2

2ma

(∇aψ)
2 + Uψ2

]
dq. (20.5)

§ 21. General properties of motion in one dimension

If the potential energy of a particle depends on only one coordinate (x),
then the wave function can be sought as the product of a function of y and
z and a function of x only. The former of these is determined by Schrödinger’s
equation for free motion, and the second by the one-dimensional Schrödinger’s
equation

d2ψ

dx2
+

2m

ℏ2
[E − U(x)]ψ = 0 (21.1)

Similar one-dimensional equations are evidently obtained for the problem of
motion in a field whose potential energy is U(x, y, z) = U1(x)+U2(y)+U3(z),
i.e. can be written as a sum of functions each of which depends on only one of
the coordinates. In §§22–24 we shall discuss a number of actual examples of
such “one-dimensional” motion. Here we shall obtain some general properties
of the motion.

We shall show first of all that, in a one-dimensional problem, none of the
energy levels of a discrete spectrum is degenerate. To prove this, suppose
the contrary to be true, and let ψ1 and ψ2 be two different eigenfunctions
corresponding to the same value of the energy. Since both of these satisfy
the same equation (21.1), we have

ψ′′
1

ψ1

=
2m

ℏ2
(U − E) =

ψ′′
2

ψ2

or ψ′′
1ψ2 − ψ1ψ

′′
2 = 0 (the prime denotes differentiation with respect to x).

Integrating this relation, we find

ψ′
1ψ2 − ψ1ψ

′
2 = const. (21.2)
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Since ψ1 = ψ2 = 0 at infinity, the constant must be zero, and so

ψ′
1ψ2 − ψ1ψ

′
2 = 0,

or ψ′
1/ψ1 = ψ′

2/ψ2. Integrating again, we obtain ψ1 = const · ψ2, i.e. the two
functions are essentially identical.

The following theorem (called the oscillation theorem) may be stated
for the wave functions ψn(x) of a discrete spectrum. The function ψn(x)
corresponding to the (n+1)th eigenvalue En (the eigenvalues being arranged
in order of magnitude), vanishes n times (for finite10) values of x).

We shall suppose that the function U(x) tends to finite limiting values
as x → ±∞ (though it need not be a monotonic function). We take the
limiting value U(+∞) as the zero of energy (i.e. we put U(+∞) = 0), and
we denote U(−∞) by U0, supposing that U0 > 0. The discrete spectrum
lies in the range of energy values for which the particle cannot move off to
infinity; for this to be so, the energy must be less than both limiting values
U(±∞), i.e. it must be negative:

E < 0, (21.3)

and we must, of course, have in any case E > Umin, i.e. the function U(x)
must have at least one minimum with Umin < 0.

Let us now consider the range of positive energy values less than U0:

0 < E < U0 (21.4)

In this range the spectrum will be continuous, and the motion of the particle
in the corresponding stationary states will be infinite, the particle moving off
towards x = +∞. It is easy to see that none of the eigenvalues of the energy
in this part of the spectrum is degenerate either. To show this, it is sufficient
to notice that the proof given above (for the discrete spectrum) still holds if
the functions ψ1, ψ2 are zero at only one infinity (in the present case they
tend to zero as x→ −∞).

For sufficiently large positive values of x, we can neglect U(x) in Schrödinger’s
equation (21.1):

ψ′′ +
2m

ℏ2
Eψ = 0

This equation has real solutions in the form of a stationary plane wave

ψ = a cos(kx+ δ) (21.5)
10) If the particle can be found only on a limited segment of the x-axis, we must consider

the zeros of ψn(x) within that segment.
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where a and δ are constants, and the wave numberk = p/ℏ =
√
2mE/ℏ. This

formula determines the asymptotic form (for x→ +∞) of the wave functions
of the non-degenerate energy levels in the range (21.4) of the continuous
spectrum. For large negative values of x, Schrödinger’s equation is

ψ′′ − 2m

ℏ2
(U0 − E)ψ = 0

The solution which does not become infinite as x→ −∞ is

ψ = beκx, κ =
1

2m

√
U0 − E. (21.6)

This is the asymptotic form of the wave function as x→ ∞. Thus the wave
function decreases exponentially in the region where E < U .

Finally, for
E > U0 (21.7)

the spectrum will be continuous, and the motion will be infinite in both
directions. In this part of the spectrum all the levels are doubly degener-
ate. This follows from the fact that the corresponding wave functions are
determined by the second-order equation (21.1), and both of the two inde-
pendent solutions of this equation satisfy the necessary conditions at infinity
(whereas, for instance, in the previous case one of the solutions became infi-
nite as x→ −∞, and therefore had to be rejected). The asymptotic form of
the wave function as x→ +∞ is

ψ = a1e
ikx + a2e

−ikx (21.8)

and similarly for x → −∞. The term eikx corresponds to a particle moving
to the right, and e−ikx corresponds to one moving to the left.

Let us suppose that the function U(x) is even [U(x) = U(x)]. Then
Schrödinger’s equation (21.1) is unchanged when the sign of the coordinate
is reversed. It follows that, if ψ(x) is some solution of this equation, then
ψ(−x) is also a solution, and coincides with ψ(x) apart from a constant factor:
ψ(−x) = cψ(x). Changing the sign of x again, we obtain ψ(x) = c2ψ(x),
whence c = ±1. Thus, for a potential energy which is symmetrical (relative
to x = 0), the wave functions of the stationary states must be either even
[ψ(−x) = ψ(x)] or odd [ψ(−x) = −ψ(x)].11) In particular, the wave function

11) In this discussion it is assumed that the stationary state is not degenerate, i.e. the
motion is not infinite in both directions. Otherwise, when the sign of x is changed, two
wave functions belonging to the energy level concerned may be transformed into each
other. In this case, however, although the wave functions of the stationary states need not
be even or odd, they can always be made so (by choosing appropriate linear combinations
of the original functions).
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of the ground state is even, since it cannot have a node, while an odd function
always vanishes for x = 0 [ψ(0) = −ψ(0) = 0].

To normalize the wave functions of one-dimensional motion (in a contin-
uous spectrum), there is a simple method of determining the normalization
coefficient directly from the asymptotic expression for the wave function for
large values of |x|.

Let us consider the wave function of a motion infinite in one direction,
x → +∞. The normalization integral diverges as x → ∞ (as x → −∞,
the function decreases exponentially, so that the integral rapidly converges).
Hence, to determine the normalization constant, we can replace ψ by its
asymptotic value (for large positive x), and perform the integration, taking
as the lower limit any finite value of x, say zero; this amounts to neglecting
a finite quantity in comparison with an infinite one. We shall show that the
wave function normalized by the condition∫

ψ∗
pψp′dx = δ

(
p− p′

2πℏ

)
= 2πℏδ(p− p′), (21.9)

where p is the momentum of the particle at infinity, must have the asymptotic
form (21.5) with a = 2:

ψp ≈ 2 cos(kx+ δ) = ei(kx+δ) + e−i(kx+δ) (21.10)

Since we do not intend to verify the orthogonality of the functions correspond-
ing to different p, on substituting the functions (21.10) in the normalization
integral we shall suppose the momenta p and p′ to be arbitrarily close; we
can therefore put δ = δ′ (in general δ is a function of p). Next, we retain in
the integrand only those terms which diverge for p = p′; in other words, we
omit terms containing the factor e±i(k+k′)x. Thus we obtain∫

ψ∗
pψp′dx =

∫ +∞

0

ei(k
′−k)xdx+

∫ +∞

0

e−i(k′−k)xdx =

∫ +∞

−∞
ei(k

′−k)xdx

which, from (15.7), is the same as (21.9).
The change to normalization by the delta function of energy is effected,

in accordance with (5.14), by multiplying ψp by(
d(p/2πℏ)

dE

)1/2

=
1√
2πℏv

where v is the velocity of the particle at infinity. Thus

ψE =
1√
2πℏv

ψp =
1√
2πℏv

(ei(kx+δ) + e−i(kx+δ)) (21.11)



Chap. III SCHRÖDINGER’S EQUATION 75

The current density is 1/(2πℏ) in each of the travelling waves that make up
the stationary wave (21.11). Thus we can formulate the following rule for the
normalization of the wave function for a motion infinite in one direction by
the delta function of energy: having represented the asymptotic expression
for the wave function in the form of a sum of two plane waves travelling in
opposite directions, we must choose the normalization coefficient in such a
way that the current density in the wave travelling towards (or away from)
the origin is 1/(2πℏ).

Similarly, we can obtain an analogous rule for normalizing the wave func-
tions of a motion infinite in both directions. The wave function will be
normalized by the delta function of energy if the sum of the probability cur-
rents in the waves travelling towards the origin from x = +∞ and x = −∞
is 1/(2πℏ).

§ 22. The potential well

As a simple example of one-dimensional motion, let us consider motion in
a square potential well, i.e. in a field where U(x) has the form shown in FIG.1:

U0

a

U(x)

x

FIG.1

U(x) = 0 for 0 < x < a, U(x) = U0 for x < 0
and x > a. It is evident a priori that for
E < U0 the spectrum will be discrete, while
for E > U0 we have a continuous spectrum of
doubly degenerate levels.

In the region 0 < x < a we have
Schrödinger’s equation

ψ′′ +
2m

ℏ2
Eψ = 0 (22.1)

(the prime denotes differentiation with re-
spect to x), while in the region outside the well

ψ′′ +
2m

ℏ2
(E − U0)ψ = 0 (22.2)

For x = 0 and x = a the solutions of these equations must be continuous
together with their derivatives, while for x = ±∞ the solution of equation
(22.2) must remain finite (for the discrete spectrum when E < U0, it must
vanish).

For E < U0, the solution of equation (22.2) which vanishes at infinity is
ψ = const · e∓κx, where

κ =
1

ℏ
√

2m(U0 − E); (22.3)
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the signs − and + in the exponent refer to the regions x > a and x < 0
respectively. The probability |ψ|2 of finding the particle decreases exponen-
tially in the region where E < U(x). Instead of the continuity of ψ and ψ′ at
the edge of the potential well, it is convenient to require the continuity of ψ
and of its logarithmic derivative ψ′/ψ. Taking account of (22.3), we obtain
the boundary condition in the form

|ψ′|/ψ = ∓κ (22.4)

We shall not pause here to determine the energy levels in a well of arbitrary
depth U0 (see Problem 2), and shall analyse fully only the limiting case of
infinitely high walls (U0 → ∞).

For U0 = ∞, the motion takes place only between the points x = 0 and
x = a and, as was pointed out in §18, the boundary condition at these points
is

ψ = 0 (22.5)
(It is easy to see that this condition is also obtained from the general condition
(22.4). For, when U0 → ∞, we have also κ → ∞ and hence ψ′/ψ → ∞;
since ψ′ cannot become infinite, it follows that ψ = 0.) We seek a solution
of equation (22.1) inside the well in the form

ψ = c sin(kx+ δ), k =

√
2mE

ℏ
. (22.6)

The condition ψ = 0 for x = 0 gives δ = 0, and then the same condition for
x = a gives sin ka = 0, whence ka = nπ, n being a positive integer,12) or

En =
π2ℏ2

2ma2
n2, n = 1, 2, 3, . . . (22.7)

This determines the energy levels of a particle in a potential well. The
normalized wave functions of the stationary states are

ψn =

√
2

n
sin
(πn
a
x
)
. (22.8)

From these results we can immediately write down the energy levels for
a particle in a rectangular “potential box”, i.e. for three-dimensional motion
in a field whose potential energy U = 0 for 0 < x < a, 0 < y < b, 0 < z < c
and U = ∞ outside this region. In fact, these levels are given by the sums

En1n2n3 =
π2ℏ2

2m

(
n2
1

a2
+
n2
2

b2
+
n2
3

c2

)
, n1, n2, n3 = 1, 2, 3, . . . , (22.9)

12) For n = 0 we should have ψ = 0 identically.
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and the corresponding wave functions by the products

ψn1n2n3 =

√
8

abc
sin
(πn1

a
x
)
sin
(πn2

b
y
)
sin
(πn3

c
z
)
. (22.10)

It may be noted that the energy E0 of the ground state is, by (22.7) or
(22.9), of the order of ℏ2/ml2, where l is the linear dimension of the region in
which the particle moves. This result is in accordance with the uncertainty
relation; when the uncertainty in the coordinate is ∼ l, the uncertainty in the
momentum, and therefore the order of magnitude of the momentum itself, is
∼ ℏ/l. The corresponding energy is ∼ (ℏ/l)2/m.

PROBLEMS
1. Determine the probability distribution for various values of the momentum

for the normal state of a particle in an infinitely deep square potential well.
SOLUTION. The coefficients a(p) in the expansion of the function ψ1 (22.8)

in terms of the eigenfunctions of the momentum are

a(p) =

∫
ψ∗
pψ1dx =

√
2

a

∫ a

0
sin
(π
a
x
)
exp

(
−i
px

ℏ

)
dx.

Calculating the integral and squaring its modulus, we obtain the required proba-
bility distribution:

|a(p)|2 dp

2πℏ
=

4πℏ3a
(p2a2 − π2ℏ2)2

cos2
pa

2ℏ
dp.

2. Determine the energy levels for the potential well shown in FIG.2.
SOLUTION. The spectrum of energy values E < U1, which we shall consider,

U1

U2

a

U(x)

x

FIG.2

is discrete. In the region x < 0 the wave function
is

ψ = c1e
κ1x, κ1 = (1/ℏ)

√
2m(U1 − E),

while in the region x > a

ψ = c2e
−κ2x, κ2 = (1/ℏ)

√
2m(U2 − E).

Inside the well (0 < x < a) we look for ψ in the
form

ψ = c sin(kx+ δ), k =
√
2mE/ℏ.

The condition of the continuity of ψ′/ψ at the edges of the well gives the equations

k cot δ = κ1 =

√
2m

ℏ2
U1 − k2, k cot(ka+ δ) = −κ2 = −

√
2m

ℏ2
U2 − k2,
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or
sin δ =

kℏ√
2mU1

, sin(ka+ δ) = − kℏ√
2mU2

.

Eliminating δ, we obtain the transcendental equation

ka = nπ− arcsin
kℏ√
2mU1

− arcsin
kℏ√
2mU2

(1)

(where n = 1, 2, 3, . . . , and the values of the inverse sine are taken between 0 and
π/2), whose roots determine the energy levels E = k2ℏ2/2m. For each n there is
in general one root; the values of n number the levels in order of increasing energy.

Since the argument of the inverse sine cannot exceed unity, it is clear that
the values of k can lie only in the range from 0 to

√
2mU1/ℏ. The left-hand side

of equation (1) increases monotonically with k, and the right-hand side decreases
monotonically. Hence it is necessary, for a root of equation (1) to exist, that for the
right-hand side should be less than the left-hand side. In particular, the inequality

a

√
2mU1

ℏ
⩾ π

2
− arcsin

√
U1

U2
, (2)

which is obtained for n = 1, is the condition that at least one energy level exists
in the well. We tee that for given and unequal U1 ̸= U2, there are always widths a
of the well which are so small that there is no discrete energy level. For U1 = U2,
the condition (2) is evidently always satisfied.

For U1 = U2 = U0 (a symmetrical well), equation (1) reduces to

arcsin
ℏk√
2mU0

nπ− ka

2
. (3)

Introducing the variable ξ = ka/2, we obtain for odd n the equation

cos ξ = ±γξ, γ =
ℏ
a

√
2

mU0
, (4)

and those roots of this equation must be taken for which tan ξ > 0. For even n we
obtain the equation

sin ξ = ±γξ, (5)

and we must take those roots for which tan ξ < 0. The roots of these two equations
determine the energy levels E = 2ξ2ℏ2/ma2. The number of levels is finite when
γ ̸= 0.

In particular, for a shallow well in which U0 ≪ ℏ2/ma2, we have γ ≫ 1 and
equation (5) has no root. Equation (4) has one root (with the upper sign on the
right-hand side), ξ ≈ (1/γ)(1 − 1/2γ2). Thus the well contains only one energy
level,

E0 ≈ U0 −
ma2

2ℏ2
U2
0
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which is near the top of the well.
3. Determine the pressure exerted on the walls of a rectangular “potential

box” by a particle inside it.
SOLUTION. The force on the the wall perpendicular to the x-axis is the mean

value of the derivative −∂H/∂a of the Hamilton’s function of the particle with
respect to the length of the box in the direction of the x-axis. The pressure
is obtained by dividing this force by the area bc of the wall. According to the
formula (11.16), the required mean value is found by differentiating the eigenvalue
(22.9) of the energy. The result is

p(x) =
π2ℏ2

ma3bc
n21.

§ 23. The linear oscillator

Let us consider a particle executing small oscillations in one dimension
(what is called a linear oscillator). The potential energy of such a particle
is mω2x2/2, where ω is, in classical mechanics, the characteristic (angular)
frequency of the oscillations. Accordingly, the Hamiltonian of the oscillator
is

Ĥ =
p̂2

2m
+
mω2x2

2
. (23.1)

Since the potential energy becomes infinite for x = ±∞, the particle can
have only a finite motion, and the energy eigenvalue spectrum is entirely
discrete.

Let us determine the energy levels of the oscillator, using the matrix
method13) . We shall start from the equations of motion in the form (19.3);
in this case they give ̂̈x+ ω2x = 0. (23.2)
In matrix form, this equation reads

(ẍ)mn + ω2xmn = 0.

For the matrix elements of the acceleration we have, according to (11.8),
(ẍ)mn = iωmn(ẋ)mn = −ω2

mnxmn. Hence we obtain

(ω2
mn − ω2)xmn = 0.

Hence it is evident that all the matrix elements xmn vanish except those for
which ωmn = ω or ωmn = −ω. We number all the stationary states so that

13) This was done by Heisenberg in 1925, before Schrödinger’s discovery of the wave
equation.
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the frequencies ±ω correspond to transitions n → n ∓ 1, i.e. ωn,n∓1 = ±ω.
Then the only non-zero matrix elements are xn,n±1.

We shall suppose that the wave functions ψn are taken real. Since x is a
real quantity, all the matrix elements xmn are real. The Hermitian condition
(11.10) now shows that the matrix xmn is symmetrical:

xmn = xnm.

To calculate the matrix elements of the coordinate which are different
from zero, we use the commutation rule

̂̇xx̂− x̂̂̇x = −i
ℏ
m
,

written in the matrix form

(ẋx)mn − (xẋ)mn = − iℏ
m
δmn

By the matrix multiplication rule (11.12) we hence have for m = n

i
∑
l

(ωnlxnlxln − xnlωlnxln) = 2i
∑
l

ωnlx
2
nl = −i

ℏ
m
.

In this sum, only the terms with l = n±1 are different from zero, so that
we have

(xn+1,n)
2 − (xn,n−1)

2 =
ℏ

2mω
. (23.3)

From this equation we deduce that the quantities (xn+1,n)
2 form an arith-

metic progression, which is unbounded above, but is certainly bounded be-
low, since it can contain only positive terms. Since we have as yet fixed only
the relative positions of the numbers n of the states, but not their absolute
values, we can arbitrarily choose the value of n corresponding to the first
(normal) state of the oscillator, and put this value equal to zero. Accord-
ingly x0,−1 must be regarded as being zero identically, and the application
of equations (23.3) with n = 0, 1, · · · successively leads to the result

(xn,n−1)
2 =

nℏ
2mω

.

Thus we finally obtain the following expression for the matrix elements
of the coordinate which are different from zero:14)

xn,n−1 = xn−1,n =

√
nℏ
2mω

(23.4)

14) We choose the indeterminate phases αn (see the second footnote to §11) so as to
obtain the plus sign in front of the radical in all the matrix elements (23.4). Such a choice
is always possible for a matrix in which only those elements are different from zero which
correspond to transitions between states with adjacent numbers.
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The matrix of the operator Ĥ is diagonal, and the matrix elements Hnn

are the required eigenvalues En of the energy of the oscillator. To calculate
them, we write

Hnn = En =
m

2

[(
ẋ2
)
nn

+ ω2(x2)nn
]
=

=
m

2

[∑
l

iωnlxnliωlnxln + ω2
∑
l

xnlxln

]
=
m

2

∑
l

(
ω2 + ω2

nl

)
x2ln.

In the sum over l, only the terms with l = n ± 1 are different from zero;
substituting (23.4), we obtain

En = (n+ 1/2)ℏω, n = 0, 1, 2, . . . (23.5)

Thus the energy levels of the oscillator lie at equal intervals of ℏω from one
another. The energy of the normal state (n = 0) is ℏω/2; we call attention
to the fact that it is not zero.

The result (23.5) can also be obtained by solving Schrödinger’s equation.
For an oscillator, this has the form

d2ψ

dx2
+

2m

ℏ2

(
E − mω2x2

2

)
ψ = 0 (23.6)

Here it is convenient to introduce, instead of the coordinate x, the dimen-
sionless variable ξ by the relation

ξ =

√
mω

ℏ
x. (23.7)

Then we have the equation

ψ′′ +

(
2E

ℏω
− ξ2

)
ψ = 0; (23.8)

here the prime denotes differentiation with respect to ξ.
For large ξ, we can neglect 2E/ℏω in comparison with ξ2; the equation

ψ′′ = ξ2ψ has the asymptotic integrals ψ = e±ξ2/2(for differentiation of this
function gives ψ′′ = ξ2ψ on neglecting terms of order less than that of the
term retained). Since the wave function ψ must remain finite as ξ → ±∞,
the index must be taken with the minus sign. It is therefore natural to make
in equation (23.8) the substitution

ψ = e−ξ2/2χ(ξ). (23.9)



82 THE LINEAR OSCILLATOR § 23

For the function we obtain the equation (with the notation 2E/1 = 2n; since
we already know that E > 0, we have n > −1/2)

χ′′ − 2ξχ′ + 2nχ = 0, (23.10)

where the function must be finite for all finite ξ, and for ξ → ±∞ must not
tend to infinity more rapidly than every finite power of ξ (in order that the
function ψ should tend to zero).

Such solutions of equation (23.10) exist only for positive integral (and
zero) values of n (see §a of the Mathematical Appendices); this gives the
eigenvalues (23.5) for the energy, which we know already. The solutions of
equation (23.10) corresponding to various integral values of n are

χ = const ·Hn(ξ),

where Hn(ξ) are what are called Hermite polynomials; these are polynomials
of the nth degree in ξ, defined by the formula

Hn(ξ) = (−1)neξ
2 dne−ξ2

dξn
(23.11)

Determining the constants so that the functions ψn satisfy the normalization
condition ∫ +∞

−∞
ψ2
n(x)dx = 1

we obtain (see (a.7))

ψn(x) =
(mω
πℏ

)1/4 1√
2nn!

exp
(
−mω

2ℏ
x2
)
Hn

(
x

√
mω

ℏ

)
. (23.12)

Thus the wave function of the normal state is

ψ0(x) =
(mω
πℏ

)1/4
exp

(
−mω

2ℏ
x2
)
. (23.13)

It has no zeros for finite x, which is as it should be.
By calculating the integrals

∫ +∞
−∞ ψnψmξdξ, we can determine the matrix

elements of the coordinate; this calculation leads, of course, to the same
values (23.4).

Finally, we shall show how the wave functions ψn may be calculated by
the matrix method. We notice that, in the matrices of the operators ̂̇x± iωx̂,
the only elements different from zero are

(ẋ− iωx)n,n−1 = −(ẋ+ iω)n,n−1 = −i

√
2ωℏn
m

(23.14)
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Using the general formula (11.11), and taking into account the fact that
ψ1 ≡ 0, we conclude that

(̂̇x− iωx)ψ0 = 0

After substituting the expression ̂̇x = −i ℏ
m

d
dx

, we obtain the equation

dψ0

dx
= −mω

ℏ
xψ0

whose normalized solution is (23.13). And, since

(̂̇x+ iωx̂)ψn−1 = (ẋ+ iωx)n,n−1ψn = i

√
2ωℏn
m

ψn,

we obtain the recurrence formula

ψn =

√
m

2ωℏn

(
− ℏ
m

d

dx
+ ωx

)
ψn−1 =

1√
2n

(
− d

dξ
+ ξ

)
ψn−1 =

= − 1√
2n

exp
ξ2

2

d

dξ

(
exp

(
−ξ

2

2

)
ψn−1

)
,

when this is applied n times to the function (23.13), we obtain the expression
(23.12) for the normalized functions ψn.

PROBLEMS
1. Determine the probability distribution of the various values of the momen-

tum for an oscillator.
SOLUTION. Instead of expanding the wave function of the stationary state in

terms of the eigenfunctions of momentum, it is simpler in the case of the oscillator
to start directly from Schrödinger’s equation in the momentum representation.
Substituting in (23.1) the coordinate operator (15.12), we obtain the Hamiltonian
in the p representation,

Ĥ =
p2

2m
− mω2ℏ

2

d2

dp2
.

The corresponding Schrödinger’s equationĤa(p) = Ea(p) for the wave function
a(p) in the momentum representation is

d2a(p)

dp2
+

2

mω2ℏ2

(
E − p2

2m

)
a(p) = 0.

This equation is of exactly the same form as (23.6); hence its solutions can be writ-
ten down at once by analogy with (23.12). Thus we find the required probability
distribution to be

|a(p)|2 dp

2πℏ
=

1

2nn!
√
πmωℏ

exp

(
− p2

mωℏ

)
H2

n

(
p√
mωℏ

)
.
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2. Determine the lower limit of the possible values of the energy of an oscillator,
using the uncertainty relation (16.7).

SOLUTION. Since x2 = x2 + (δx)2, p2 = p2 + (δp)2, (16.7) gives for the mean
value of the energy of the oscillator

E =
mω2

2
x2 +

p2

2m
⩾ mω2

2
(δx)2 +

(δp)2

2m
⩾ mω2ℏ2

8(δp)2
+

(δp)2

2m
.

On determining the minimum value of this expression (regarded as a function of
δp), we find the lower limit of the mean values of the energy, and therefore that of
all possible values: E ⩾ ℏω/2.

3. Find the wave functions of the states of a linear oscillator that minimize
the uncertainty relation, i.e. in which the standard deviations of the coordinate
and momentum in the wave packet are related by δpδx = ℏ/2 (E. Schrödinger
1926).15)

SOLUTION. The required wave functions must have the form

Ψ(x, t) =
1

(2π)1/4(δx)1/2
exp

{
i
px

ℏ
− (x− x)2

4(δx)2
− iφ(t)

}
. (1)

Their dependence on the coordinate at any instant is in accordance with (16.8),
x = x(t)and p = p(t) = mẋ(t) being the mean values of the coordinate and the
momentum; according to (19.3), we have, for a linear oscillator (U = mω2x2/2),̂̇p = −mω2x, and therefore for the mean value ṗ = −mω2x or

ẍ+ ω2x = 0 (2)

i.e. the function satisfies the classical equation of motion. The constant factor in
(1) is determined by the normalization condition

∫ +∞
−∞ |Ψ|2dx = 1 in addition to

this factor, Ψ may contain a phase factor with a time-dependent phase φ(t). The
unknown constant δx and the unknown function φ(t) are found by substituting
(1) in the wave equation

− ℏ2

2m

∂2Ψ

∂x2
+
mω2x2

2
Ψ = iℏ

∂Ψ

∂t
.

With (2), the substitution gives(
x2

2
− xx

)(
m2ω2

ℏ2
− 1

4(δx)4

)
+

[
m2ẋ

2

2ℏ2
− x2

8(δx)4
+

1

4(δx)2
− m

ℏ
˙φ(t)

]
= 0.

Hence (δx)2 = ℏ/(2m) and

φ̇ =
m

2ℏ
(ẋ

2 − ω2x2) +
ω

2
, φ =

1

2ℏ
px+

ω

2
t.

15) These are called coherent states.
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Thus we have finally

Ψ(x, t) =
(mω
πℏ

)1/4
exp

{
ipx

ℏ
− mω(x− x)2

2ℏ

}
exp

{
− iωt

2
− ipx

2ℏ

}
(3)

When x = 0 and p = 0, this becomes ψ0(x)e
iωt/2, the wave function of the

oscillator ground state.
The mean energy of the oscillator in a coherent state is

E =
p2

2m
+
mω2x2

2
=

p2

2m
+
mω2x2

2
+

ℏω
2

≡ ℏω
(
n+

1

2

)
; (4)

the quantity n is the mean “number” of quanta ℏω in the state. We see that the
coherent state is completely specified by the function x(t) satisfying the classical
equation (2). The general form of this function may be given as

mωx+ ip√
2mℏω

aeiωt, |a|2 = n. (5)

The function (3) can be expanded in wave functions of the stationary states of
the oscillator:

Ψ =
∞∑
n=0

anΨn, Ψn(x, t) = ψn(x) exp

{
−i

(
n+

1

2

)
ωt

}
.

The coefficients in this expansion are (cf. §41, Problem 1)

an =

∫ +∞

−∞
Ψ∗

nΨdx. (6)

The probability for the oscillator to be in the nth state is therefore

ωn = |an|2 = e−nn
n

n!
(7)

the Poisson distribution.
4. Determine the energy levels for a particle moving in a field of potential

energy (Fig. 3; P. M. Morse)

U(x) = A
(
e−2αx − 2e−αx

)
.

SOLUTION. The spectrum of positive eigenvalues of the energy is continuous
(and the levels are not degenerate), while the spectrum of negative eigenvalues is
discrete.

Schrödinger’s equation reads

d2ψ

dx2
+

2m

ℏ2
(
E −Ae−2αx + 2Ae−αx

)
ψ = 0.
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We introduce a new variable

ξ =
2
√
2mA

αℏ
e−αx

(taking values from 0 to ∞) and the notation (we consider the discrete spectrum,
so that E < 0)

s =

√
−2mE

αℏ
, n =

√
2mA

αℏ
+

(
s+

1

2

)
(1)

Schrödinger’s equation then takes the form

ψ′′ +
1

ξ
ψ′ +

(
−1

4
+
n+ s+ 1/2

ξ
− s2

ξ2

)
ψ = 0

As ξ → ∞, the function ψ behaves asymptotically as e±ξ/2, while as ξ → 0 it is
proportional to ξ±s. From considerations of finiteness we must choose the solution

U(x)

x

−A

FIG. 3

which behaves as e−ξ/2 as ξ → ∞ and as
ξs as ξ → 0. We make the substitution

ψ = e−ξ/2ξsω(ξ)

and obtain for ω the equation

ξω′′ + (2s+ 1− ξ)ω′ + nω = 0, (2)

which has to be solved with the conditions
that ω is finite as ξ → 0, while as ξ → ∞,
ω tends to infinity not more rapidly than
every finite power of ξ. Equation (2) is

the equation for a confluent hypergeometric function (see §d of the Mathematical
Appendices):

ω = F (−n, 2s+ 1, ξ).

A solution satisfying the required conditions is obtained for non-negative integral
n (when the function F reduces to a polynomial). According to the definitions (1),
we thus obtain for the energy levels the values

−En =

[
1− αℏ√

2mA

(
n+

1

2

)]2
.

where n takes positive integral values from zero to the greatest value for which
(so that the parameter s is positive in accordance with its definition). Thus the
discrete spectrum contains only a limited number of levels. If

√
2mA

αℏ
<

1

2
,

there is no discrete spectrum at all.
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5. The same as Problem 4, but with U = − U0

cosh2 αx
(Fig. 4).

SOLUTION. The spectrum of positive eigenvalues of the energy is continuous,
while that of negative values is discrete; we shall consider the latter. Schrödinger’s
equation is

d2ψ

dx2
+

2m

ℏ

(
E +

U0

cosh2 αx

)
ψ = 0.

We put ξ = tanhαx and use the notation

ε =

√
−2mE

ℏα
,

2mU0

α2ℏ2
= s(s+ 1), s =

1

2

(
−1 +

√
1 +

8mU0

α2ℏ2

)
,

obtaining

U(x)
x

−U0

FIG. 4

d

dξ

[
(1− ξ2)

dψ

dξ

]
+

[
s(s+ 1)− ε2

1− ξ2

]
ψ = 0.

This is the equation of the associated Legendre poly-
nomials; it can be brought to hypergeometric form by
making the substitution

ψ = (1ξ2)ε/2w(ξ)

and temporarily changing the variable to 1
2(1) = u:

u(1− u)w′′ + (ε+ 1)(1− 2u)w′ − (ε− s)(ε+ s+ 1)w = 0.

The solution finite for ξ = 1 (i.e. for x = ∞) is

ψ = (1ξ2)ε/2w(ξ)F [ε− s, ε+ s+ 1, ε− 1, (1− ξ)/2].

If ψ remains finite for ξ = 1 (i.e. for x = − inf), we must have ε− s = −n where
n = 0, 1, 2, . . . ; then F is a polynomial of degree n, which is finite for ξ = 1.

Thus the energy levels are determined by ε− s = −n, or

En = −ℏ2α2

8m

[
−(2n+ 1) +

√
1 +

8mU0

α2ℏ2

]2
.

There is a finite number of levels, determined by the condition ε > 0, i.e. n < s.

§ 24. Motion in a homogeneous field

Let us consider the motion of a particle in a homogeneous external field.
We take the direction of the field as the axis of x; let F be the force acting
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on the particle in this field. In an electric field of intensity E, this force is
F = eE, where e is the charge on the particle.

The potential energy of the particle in the homogeneous field is of the
form U = Fx + const; choosing the constant so that U = 0 for x = 0, we
have U = −Fx. Schrödinger’s equation for this problem is

d2ψ

dx2
+

2m

ℏ
(E + Fx)ψ = 0. (24.1)

Since U tends to +∞ as x → −∞, and vice versa, it is clear that the
energy levels form a continuous spectrum occupying the whole range of energy
values E from −∞ to +∞. None of these eigenvalues is degenerate, and they
correspond to motion which is finite towards x = −∞ and infinite towards
x = +∞.

Instead of the coordinate x, we introduce the dimensionless variable

ξ =

(
x+

E

F

)(
2mF

ℏ

)1/3

. (24.2)

Equation (24.1) then takes the form

ψ′′ + ξψ = 0. (24.3)

This equation does not contain the energy parameter. Hence, if we obtain
a solution of it which satisfies the necessary conditions of finiteness, we at
once have the eigenfunction for arbitrary values of the energy.

The solution of equation (24.3) which is finite for all x has the form (see
§b of the Mathematical Appendices)

ψ(ξ) = AΦ(−ξ), (24.4)

where
Φ(ξ) =

1√
π

∫ ∞

0

cos

(
1

3
u3 + uξ

)
du

is called the Airy function, while A is a normalization factor which we shall
determine below.

As ξ → −∞, the function ψ(ξ) tends exponentially to zero. The asymp-
totic expression which determines ψ(ξ) for large negative values of ξ is (see
(b.4))

ψ(ξ) ≈ A

2|ξ|1/4
exp

(
−2

3
|ξ|3/2

)
(24.5)
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For large positive values of ξ, the asymptotic expression for ψ(ξ) is (see
(b.5))16)

ψ(ξ) =
A

ξ1/4
sin

(
2

3
ξ3/2 +

π

4

)
. (24.6)

Using the general rule (5.4) for the normalization of eigenfunctions of a con-
tinuous spectrum, let us reduce the function (24.4) to the form normalized
by the delta function of energy, for which∫ +∞

−∞
ψ(ξ)ψ(ξ′)dxδ(E ′ − E). (24.7)

In §21 we gave a simple method of determining the normalization coefficient
by means of the asymptotic expression for the wave functions. Following this
method, we represent the function (24.6) as the sum of two travelling waves:

ψ(ξ) ≈ A

2ξ1/4

{
exp

[
i

(
2

3
ξ3/2 − π

4

)]
+ exp

[
−i

(
2

3
ξ3/2 − π

4

)]}
.

The current density, calculated from each of these two terms, is

v(
A

2ξ1/4
)2 =

√
2

m
(E + Fx)

(
A

2ξ1/4

)2

= A2 (2ℏF )1/3

4m2/3
.

and equating this to 1/2πℏ we find

A =
(2m)1/3

π1/2F 1/6ℏ2/3
. (24.8)

PROBLEM
Determine the wave functions in the momentum representation for a particle

in a homogeneous field.
SOLUTION. The Hamiltonian in the momentum representation is

Ĥ =
p2

2m
− iℏF

d

dp
,

so that Schrödinger’s equation for the wave function a(p) has the form

−iℏF
da

dp
+

(
p2

2m
− E

)
a.

16) It may be noted, by way of anticipation, that the asymptotic expressions (24.5) and
(24.6) correspond to the quasi-classical expressions for the wave function in the classically
inaccessible and accessible regions (§47).
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Solving this equation, we find the required functions

aE(p) =
1√

2πℏF
exp

{
i

ℏF
F

(
Ep− p3

6m

)}
.

These functions are normalized by the condition∫ +∞

−∞
a∗E(p)aE′(p)dp = δ(E′ − E).

§ 25. The transmission coefficient

Let us consider the motion of particles in a field of the type shown in Fig.
5: U(x) increases monotonically from one constant limit (U = 0 as x→ −∞)
to another (U = U0 as x→ +∞). According to classical mechanics, a particle
of energy E < U0 moving in such a field from left to right, on reaching such
a “potential wall”, is reflected from it, and begins to move in the opposite
direction; if, however, E > U0, the particle continues to move in its original
direction, though with diminished velocity. In quantum mechanics, a new

U(x)

x

U0

FIG. 5

phenomenon appears: even for E > U0, the parti-
cle may be reflected from the potential wall. The
probability of reflection must in principle be calcu-
lated as follows.

Let the particle be moving from left to right.
For large positive values of x, the wave function
must describe a particle which has passed “above
the wall” and is moving in the positive direction of
x, i.e. it must have the asymptotic form

for x→ ∞ : ψ ≈ Aeik2x, k2 =
1

ℏ
√

2m(E − U0) (25.1)

and A is a constant. To find the solution of Schrödinger’s equation which
satisfies this boundary condition, we calculate the asymptotic expression for
x → −∞; it is a linear combination of the two solutions of the equation of
free motion, i.e. it has the form

for x→ −∞ : ψ ≈ eik1x +Be−k1x, k1 =
1

ℏ
√
2mE. (25.2)

The first term corresponds to a particle incident on the wall (we suppose
ψ normalized so that the coefficient of this term is unity); the second term
represents a particle reflected from the wall. The probability current density
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in the incident wave is k1, in the reflected wave k1|B|2, and in the transmitted
wave k2|A|2. We define the transmission coefficient D of the particle as the
ratio of the probability current density in the transmitted wave to that in
the incident wave:

D =
k2
k1

|A|2. (25.3)

Similarly we can define the reflection coefficient R as the ratio of the density
in the reflected wave to that in the incident wave. Evidently R = 1D:

R = |B|2 = 1− k2
k1

|A|2 (25.4)

(this relation between A and B is automatically satisfied).
If the particle moves from left to right with energy E < U0, then k2

is purely imaginary, and the wave function decreases exponentially as x →
+∞. The reflected current is equal to the incident one, i.e. we have “total
reflection” of the particle from the potential wall. We emphasize, however,
that in this case the probability of finding the particle in the region where
E < U is still different from zero, though it diminishes rapidly as x increases.

In the general case of an arbitrary stationary state (with energy E > U0),
the asymptotic form of the wave function is given, both for x→ −∞ and for
x→ +∞, by a sum of waves propagated in each direction:

ψ = A1e
ik1x +B1e

−ik1x for x→ −∞,

ψ = A2e
ik2x +B2e

−ik2x for x→ +∞.
(25.5)

Since these expressions are asymptotic forms of the same solution of a linear
differential equation, there must be a linear relation between the coefficients
A1, B1 and A2, B2. Let A2 = αA1 + βB1, where α, β are constants (in
general complex) which depend on the specific form of the field U(x). The
corresponding relation for B2 can then be written down from the fact that
Schrödinger’s equation is real. This shows that, if ψ is a solution of a given
Schrödinger’s equation, the complex conjugate function ψ∗ is also a solution.
The asymptotic forms

ψ∗ = A∗
1e

−ik1x +B∗
1e

ik1x for x→ −∞,

ψ∗ = A∗
2e

−ik2x +B∗
2e

ik2x for x→ +∞

differ from (25.5) only in the nomenclature of the constant coefficients; we
therefore have B∗

2 = αB∗
1 + βA∗

1 or B2 = α∗B1 + β∗A1. Thus the coefficients
in (25.5) are related by equations of the form

A2 = αA1 + βB1, B2 = β∗A1 + α∗B1. (25.6)
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The condition of constant current along the x-axis leads to the relation
k1(|A1|2 − |B1|2) = k2(|A2|2 − |B2|2).

Expressing A2, B2 in terms of A1, B1 by (25.6), we find

|α|2 − |β|2 = k1
k2
. (25.7)

Using the relation (25.6), we can show, in particular, that the reflection
coefficients are equal (for a given energy E > U0) for particles moving in the
positive and negative directions of the x-axis; the former case corresponds
to putting B2 = 0 in (25.5), and the latter case to A1 = 0. In these two
cases, B1/A1 = β∗/α∗ and A2/B2 = β/α∗ respectively. The corresponding
reflection coefficients are

R1 =

∣∣∣∣B1

A1

∣∣∣∣2 = ∣∣∣∣β∗

α∗

∣∣∣∣2 , R2 =

∣∣∣∣A2

B2

∣∣∣∣2 = ∣∣∣∣ βα∗

∣∣∣∣2
whence it is clear that R1 = R2.

It is natural to call B1/A1 = −β∗/α∗ and A2/B2 = β/α∗ the reflection
amplitudes for motion in the positive and negative directions respectively.
They are equal in modulus but may have different phase factors.

PROBLEMS
1. Determine the reflection coefficient of a particle from a rectangular potential

wall (Fig. 6); the energy of the particle E > U0.

U(x)

x

U0

FIG. 6

SOLUTION. Throughout the region x > 0, the wave
function has the form (25.1), while in the region x < 0 its
form is (25.2). The constants A and B are determined
from the condition that ψ and dψ/dx are continuous at
x = 0:

1 +B = A, k1(1−B) = k2A,

whence

A =
2k1

k1 + k2
, B =

k1 − k2
k1 + k2

.

The reflection coefficient17) is (25.4)

R =

(
k1 − k2
k1 + k2

)2(p1 − p2
p1 + p2

)2

17) In the limiting case of classical mechanics, the reflection coefficient must become
zero. The expression obtained here, however, does not contain the quantum constant at
all. This apparent contradiction is explained as follows. The classical limiting case is that
in which the de Broglie wavelength of the particle λ ∼ ℏ/p is small in comparison with
the characteristic dimensions of the problem, i.e. the distances over which the field U(x)
changes noticeably. In the schematic example considered, however, this distance is zero
(at the point x = 0), so that the passage to the limit cannot be effected.
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For E = U0 (k2 = 0), R becomes unity, while for E → ∞ it tends to zero as
R = (U0/4E)2.

2. Determine the transmission coefficient for a rectangular potential barrier
(Fig. 7).

SOLUTION. Let E be greater than U0, and suppose that the incident particle
is moving from left to right. Then we have for the wave function in the different
regions expressions of the form

ψ = eik1x +Ae−ik1x for x < 0,

ψ = Beik2x +B′e−ik2x for 0 < x < a,

ψ = Ceik1x for x > a.

(on the side x > a there can be only the transmitted wave, propagated in the
positive direction of x). The constants A, B, B′ and C are determined from the

U(x)

a

U0

FIG. 7

conditions of continuity of ψ and dψ/dx at the points
x = 0 and a. The transmission coefficient is deter-
mined as D = k1|C|2/k1 = |C|2. On calculating this,
we obtain

D =
4k21k

2
2

(k21 − k22)
2 sin2 ak2 + 4k21k

2
2

For E < U0, k2 is a purely imaginary quantity;
the corresponding expression for D is obtained by
replacing k2 by iκ2 where ℏκ2 =

√
2m(U0 − E):

D =
4k21κ2

2

(k21 − κ2
2)

2 sin2 aκ2 + 4k21κ2
2

3. Determine the reflection coefficient for a potential wall defined by the
formula

U(x) = U0/(1 + e−αx)

(Fig. 5); the energy of the particle is E > U0.
SOLUTION. Schrödinger’s equation is

d2ψ

dx2
+

2m

ℏ2

(
E − U0

1 + e−αx

)
ψ = 0.

We have to find a solution which, as x→ +∞, has the form

ψ = const · eik2 .

We introduce a new variable
ξ = −e−αx.
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(which takes values from −∞ to 0), and seek a solution of the form

ψ = ξ−ik2/αw(ξ),

where w(ξ) tends to a constant as ξ → 0 (i.e. as x → ∞). For w(ξ) we find an
equation of hypergeometric type:

ξ(1− ξ)w′′ +

(
1− 2i

α
k2

)
(1− ξ)w′ +

1

α2
(k22 − k21)w = 0,

which has as its solution the hypergeometric function

w = F

[
i

α
(k1 − k2),−

i

α
(k1 + k2),−

2i

α
k2 + 1, ξ

]
(we omit a constant factor). As ξ → 0, this function tends to 1, i.e. it satisfies the
condition imposed.

The asymptotic form of the function ψ as ξ → −∞ (i.e. x→ −∞) is18)

ψ ≈ ξ−ik2/α
[
C1(−ξ)i(k2−k1)/α + C2(−ξ)i(k1+k2)/α

]
=

= (−1)ik2/α
[
C1e

ik1x + C−ik2x
2

]
,

where

C1 =
Γ(−(2i/α)k1)Γ(−(2i/α)k2 + 1)

Γ(−(i/α)(k1 + k2))Γ(−(i/α)(k1 + k2) + 1)
,

C2 =
Γ((2i/α)k1)Γ(−(2i/α)k2 + 1)

Γ((i/α)(k1 − k2))Γ((i/α)(k1 − k2) + 1)
.

The required reflection coefficient is R = |C2/C1|2 on calculating it by means of
the well known formula

Γ(x)Γ(1− x) =
π

sinπx
,

we have

R =

{
sinh [(π/α)(k1 − k2)]

sinh[(π/α)(k1 + k2)]

}2

.

For E = U0 (k2 = 0), R becomes unity, while for E → ∞ it tends to zero as

R =

(
πU0

αℏ

)2 2m

E
exp

(
−4π

αℏ
√
2mE

)
.

In the limiting case of classical mechanics. R becomes zero, as it should.
18) See formula (e.6), in each of whose two terms we must take only the first term of the

expansion, i.e. replace the hypergeometric functions of 1/z by unity.
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U(x)

x

U0

FIG. 8

4. Determine the transmission coefficient
for a potential barrier defined by the formula

U(x) =
U0

cosh2 αx

(Fig. 8); the energy of the particle is E < U0.
SOLUTION. The Schrödinger’s equation is the same as that obtained in the

solution of Problem 5, §23; it is necessary merely to alter the sign of U0 and to
regard the energy E now as positive. A similar calculation gives the solution

ψ = (1− ξ2)−
ik
2αF

(
− ik

α
− s,− ik

α
+ s+ 1,− ik

α
+ 1,

1− ξ

2

)
, (1)

where

ξ = tanhαx, k =
1

ℏ
√
2mE, s =

1

2

(
−1 +

√
1− 8mU0

α2ℏ2

)
.

This solution satisfies the condition that, as x→ ∞ (i.e. as ξ → 1, (1−ξ) ≈ 2e−2αx

), the wave function should include only the transmitted wave (∼ eikx). The
asymptotic form of the wave function as x→ −∞(ξ → 1) is found by transforming
the hypergeometric function with the aid of formula (e.7):

ψ ∼ eikx
Γ(ik/α)Γ(1− ik/α)

Γ(−s)Γ(1 + s)
+ eikx

Γ(−ik/α)Γ(1− ik/α)

Γ(−ik/α− s)Γ(−ik/α+ s+ 1)
. (2)

Taking the squared modulus of the ratio of coefficients in this function, we obtain
the following expression for the transmission coefficient D = 1R:

D =
sinh2 πk

α

sinh2 πk
α + cos2

(
π
2

√
1− 8mU0

ℏ2α2

) if 8mU0

ℏ2α2
< 1,

D =
sinh2 πk

α

sinh2 πk
α + cosh2

(
π
2

√
8mU0
ℏ2α2 − 1

) if 8mU0

ℏ2α2
> 1.

The first of these formulae holds also for the case U0 < 0, i.e. when the particle is
passing over a potential well instead of a potential barrier. It is interesting to note
that in that case D = 1 if 1 + 8m|U0|/ℏ2α2 = (2n + 1)2; thus, for certain values
of the depth |U0| of the well, particles passing over it are not reflected. This is
evident from equation (2), where the term in eikx vanishes for positive integral s.

5. Determine how the transmission coefficient tends to zero as E → 0, assum-
ing that the potential energy U(x) decreases rapidly at distances |x| ≫ a, where
a is the dimension of the interaction region.
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SOLUTION. For distances k|x| ≪ 1, E can be neglected in Schrödinger’s
equation. If also |x| ≫ a, the potential energy can also be neglected, and the
equation becomes

− ℏ2

2m

d2ψ

dx2
= 0,

the solution of this may be written as

ψ = a1 + b1x, x < 0, ψ = a2 + b2x, x > 0. (1)

The relation between a1, b1 and a2, b2 can be found by solving the equation
at distances |x| ∼ a. It is linear:

a1 = ρa2 + µb2, b1 = νa1 + τb2. (2)

The coefficients ρ, µ, ν and τ are real and independent of the energy, which does
not appear in the equation.19) The solution (1) must be the same as the first two
terms in the expansion of (25.1) and (25.2) in powers of x, so that

a1 = B + 1, b1 = ik(1−B), a2 = A, b2 = ikA.

Substituting these in (2) and solving for A, we get, for small k : A ≈ 2ik/ν, whence

D ≈ 4k2

ν2
∼ E

The transmission coefficient thus tends to zero in proportion to the particle energy.
This is of course true for the examples in Problems 2 and 4.

19) Since the flux is constant, ρτ − µν = 1.



CHAPTER IV

ANGULAR MOMENTUM

§ 26. Angular momentum

IN §15, to derive the law of conservation of momentum, we have made use
of the homogeneity of space relative to a closed system of particles. Besides
its homogeneity, space has also the property of isotropy: all directions in
it are equivalent. Hence the Hamiltonian of a closed system cannot change
when the system rotates as a whole through an arbitrary angle about an
arbitrary axis. It is sufficient to require the fulfilment of this condition for
an infinitely small rotation.

Let δφ be the vector of an infinitely small rotation, equal in magnitude
to the angle δφ of the rotation and directed along the axis about which
the rotation takes place. The changes δra (in the radius vectors ra of the
particles) in such a rotation are

δra = δφ× ra.

An arbitrary function ψ(r1, r2, . . . ) is thereby transformed into the func-
tion

ψ(r1 + δr1, r2 + δr2, . . . ) = ψ(r1 + r2 + . . . ) +
∑
a

δra · ∇aψ =

= ψ(r1 + r2 + . . . ) +
∑
a

δφ× ra · ∇aψ =

=

(
1 + δφ ·

∑
a

ra ×∇a

)
ψ(r1 + r2 + . . . ).

The expression
1 + δφ ·

∑
a

ra ×∇a

is the operator of an infinitely small rotation. The fact that an infinitely
small rotation does not alter the Hamiltonian of the system is expressed (cf.

97
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§15) by the commutability of the “rotation operator” with the operator Ĥ.
Since δφ is a constant vector, this condition reduces to the relation(∑

a

ra ×∇a

)
Ĥ − Ĥ

(∑
a

ra ×∇a

)
= 0, (26.1)

which expresses a certain law of conservation.
The quantity whose conservation for a closed system follows from the

property of isotropy of space is the angular momentum of the system (cf.
Mechanics, §9). Thus the operator

∑
ra×∇a must correspond exactly, apart

from a constant factor, to the total angular momentum of the system, and
each of the terms ra×∇a of this sum corresponds to the angular momentum
of an individual particle.

The coefficient of proportionality must be put equal to −iℏ; then the
expression for the angular momentum operator of a particle is −iℏr ×∇ =
r×p̂ and corresponds exactly to the classical expression r×p. Henceforward
we shall always use the angular momentum measured in units of ℏ. The
angular momentum operator of a particle, so defined, will be denoted by l̂,
and that of the whole system by L̂. Thus the angular momentum operator
of a particle is

ℏl̂ = r × p̂ = −iℏr ×∇ (26.2)
or, in components,

ℏl̂x = yp̂z − zp̂y, l̂y = zp̂x − xp̂z, l̂z = xp̂y − yp̂x.

For a system which is in an external field, the angular momentum is in
general not conserved. However, it may still be conserved if the field has
a certain symmetry. Thus, if the system is in a centrally symmetric field,
all directions in space at the centre are equivalent, and hence the angular
momentum about this centre will be conserved. Similarly, in an axially sym-
metric field, the component of angular momentum along the axis of symmetry
is conserved. All these conservation laws holding in classical mechanics are
valid in quantum mechanics also.

In a system where angular momentum is not conserved, it does not have
definite values in the stationary states. In such cases the mean value of the
angular momentum in a given stationary state is sometimes of interest. It is
easily seen that, in any non-degenerate stationary state, the mean value of
the angular momentum is zero. For, when the sign of the time is changed,
the energy does not alter, and, since only one stationary state corresponds
to a given energy level, it follows that when t is changed into −t the state
of the system must remain the same. This means that the mean values of
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all quantities, and in particular that of the angular momentum, must remain
unchanged. But when the sign of the time is changed, so is that of the
angular momentum, and we have L = −L , whence it follows that L = 0.
The same result can be obtained by starting from the mathematical definition
of the mean value as being the integral of ψ ∗ L̂ψ. The wave functions of
non-degenerate states are real (see the end of §18). Hence the expression

L = −iℏ
∫
ψ∗

(∑
a

ra ×∇a

)
ψdq

is purely imaginary, and since L must, of course, be real, it is evident that
L = 0.

Let us derive the rules for commutation of the angular momentum opera-
tors with those of coordinates and linear momenta. By means of the relations
(16.2) we easily find

{l̂x, x} = 0, {l̂x, y} = iz, {l̂x, z} = −iy,

{l̂y, y} = 0, {l̂y, z} = ix, {l̂y, x} = −iz,

{l̂z, z} = 0, {l̂z, x} = iy, {l̂z, y} = −ix.

(26.3)

For instance,

l̂xy − yl̂x =
1

ℏ
(yp̂z − zp̂y)y − y(yp̂z − zp̂y)

1

ℏ
= −z

ℏ
p̂y, y = iz

All the relations (26.3) can be written in tensor form as follows:

{l̂i, xk} = ieiklxl (26.4)

where eikl is the antisymmetric unit tensor of rank three,1) and summation
is implied over those suffixes which appear twice (called dummy suffixes).

1) The antisymmetric unit tensor of rank three, eikl (also called the unit axial tensor),
is defined as a tensor antisymmetric in all three suffixes, with e123 = 1. It is evident that,
of its 27 components, only 6 are not zero, namely those in which the suffixes i, k, l form
some permutation of 1, 2, 3. Such a component is +1 if the permutation i, k, l is obtained
from 1, 2, 3 by an even number of transpositions of pairs of figures, and is −1 if the number
of transpositions is odd. Clearly

eikleikm = 2δlm, eikleikl = 6.

The components of the vector C = A×B which is the vector product of the two vectors
A and B can be written by means of the tensor eikl in the form

Ci = eiklAkBl.
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It is easily seen that a similar commutation rule holds for the angular
momentum and linear momentum operators:

{l̂i, p̂k} = ieiklp̂l. (26.5)

By means of these formulae, it is easy to find the rules for commutation
of the operators with one another. We have

ℏ(l̂xl̂y − l̂y l̂x) = l̂x(zp̂x − xp̂z)− (zp̂x − xp̂z)l̂x =

= (l̂xz − zl̂x)p̂x − x(l̂xp̂z − p̂z l̂x) = iyp̂x + ixp̂y = iℏl̂z.

Thus
{l̂y, l̂z} = il̂x, {l̂z, l̂x} = il̂y, {l̂x, l̂y} = il̂z, (26.6)

or
{l̂i, l̂k} = ieikl l̂l (26.7)

Exactly the same relations hold for the operators of the total angular momen-
tum of the system. For, since the angular momentum operators of different
individual particles commute, we have, for instance,∑

a

l̂ay
∑
a

l̂az −
∑
a

l̂az
∑
a

l̂ay =
∑
a

(
l̂ay l̂az − l̂az l̂ay

)
.

Thus
{L̂y, L̂z} = iL̂x, {L̂z, L̂x} = iL̂y, {L̂x, L̂y} = iL̂z. (26.8)

The relations (26.8) show that the three components of the angular momen-
tum cannot simultaneously have definite values (except in the case where
all three components simultaneously vanish: see below). In this respect the
angular momentum is fundamentally different from the linear momentum,
whose three components are simultaneously measurable.

From the operators L̂x, L̂y, L̂z we can form the operator of the square of
the modulus of the angular momentum vector, and which we denote by :

L̂2 = L̂2
x + L̂2

y + L̂2
z. (26.9)

This operator commutes with each of the operators :

{L̂2, L̂x} = 0, {L̂2, L̂y} = 0, {L̂2, L̂z} = 0. (26.10)

Using (26.8), we have

{L̂2
x, L̂z} = L̂x{L̂x, L̂z}+ {L̂x, L̂z}L̂x = −i

(
L̂xL̂y + L̂yL̂x

)



Chap. IV ANGULAR MOMENTUM 101

{L̂2
y, L̂z} = i

(
L̂xL̂y + L̂yL̂x

)
{L̂2

z, L̂z} = 0

Adding these equations, we have {L̂2, L̂z} = 0. Physically, the relations
(26.10) mean that the square of the angular momentum, i.e. its modulus,
can have a definite value at the same time as one of its components.

Instead of the operators L̂x, L̂y it is often more convenient to use the
complex combinations

L̂+ = L̂x + iL̂y, L̂− = L̂x − iL̂y (26.11)

It is easily verified by direct calculation using (26.8) that the following com-
mutation rules hold:

{L̂+, L̂−} = 2L̂z, {L̂z, L̂+} = L̂+, {L̂z, L̂−} = −L̂−, (26.12)

and it is also not difficult to see that

L̂2 = L̂+L̂− + L̂2
z − L̂z = L̂−L̂+ + L̂2

z + L̂z. (26.13)

Finally, we shall give some frequently used expressions for the angular mo-
mentum operator of a single particle in spherical polar coordinates. Defining
the latter by means of the usual relations

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

we have after a simple calculation

l̂z = −i
∂

∂φ
, (26.14)

l̂± = e±iφ

(
± ∂

∂θ
+ i cot θ

∂

∂φ

)
. (26.15)

Substitution in (26.13) gives the squared angular momentum operator of the
particle:

l̂2 = −
[

1

sin2 θ

∂2

∂φ2 +
1

sin θ

∂

∂θ

(
sin θ

∂

∂φ

)]
(26.16)

It should be noticed that this is, apart from a factor, the angular part of the
Laplacian operator.
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§ 27. Eigenvalues of the angular momentum

In order to determine the eigenvalues of the component, in some direction,
of the angular momentum of a particle, it is convenient to use the expression
for its operator in spherical polar coordinates, taking the direction in question
as the polar axis. According to formula (26.14), the equation l̂zψ = lzψ can
be written in the form

−i
∂ψ

∂φ
= lzψ. (27.1)

Its solution is
ψ = f(r, θ)eilzφ,

where f(r, θ) is an arbitrary function of r and θ. If the function ψ is to be
single-valued, it must be periodic in φ, with period 2π. Hence we find2)

lz = m, m = 0,±1,±2, . . . (27.2)

Thus the eigenvalues lz are the positive and negative integers, including zero.
The factor depending on φ, which characterizes the eigenfunctions of the
operator l̂z, is denoted by

Ψm(φ) =
1√
2
eimφ. (27.3)

These functions are normalized so that∫ 2π

0

Ψ∗
m(φ)Ψm′(φ)dφ = δmm′ . (27.4)

The eigenvalues of the z-component of the total angular momentum of the
system are evidently also equal to the positive and negative integers:

Lz =M, M = 0,±1,±2, . . . (27.5)

(this follows at once from the fact that the operator L̂z is equal to the sum
of the commuting operators l̂z for the individual particles).

Since the direction of the z-axis is in no way distinctive, it is clear that
the same result is obtained for L̂x, L̂y and in general for the component of the
angular momentum in any direction: they can all take integral values only.
At first sight this result may appear paradoxical, particularly if we apply it
to two directions infinitely close to each other. In fact, however, it must be

2) The customary notation for the eigenvalues of the angular momentum component is
m, which also denotes the mass of a particle, but this should not lead to any confusion.
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remembered that the only common eigenfunction of the operators L̂x, L̂y, L̂z

corresponds to the simultaneous values

Lx = Ly = Lz = 0;

in this case the angular momentum vector is zero, and consequently so is its
projection upon any direction. If even one of the eigenvalues Lx, Ly, Lz is
not zero, the operators L̂x, L̂y, L̂z have no common eigenfunctions. In other
words, there is no state in which two or three of the angular momentum com-
ponents in different directions simultaneously have definite values different
from zero, so that we can say only that one of them is integral.

The stationary states of a system which differ only in the value of M
have the same energy; this follows from general considerations, based on the
fact that the direction of the z-axis is in no way distinctive. Thus the energy
levels of a system whose angular momentum is conserved (and is not zero)
are always degenerate.3)

Let us now look for the eigenvalues of the square of the angular mo-
mentum. We shall show how these values may be found, starting from the
commutation rules (26.8) only. We denote by ψM the wave functions of the
stationary states with the same value of L2, belonging to one degenerate
energy level, and distinguished by the value of M .4)

First of all we note that, since the two directions of the z-axis are physi-
cally equivalent, for every possible positive value M = |M | there is a corre-
sponding negative value M = |M |. Let L (a positive integer or zero) denote
the greatest possible value of |M | for a given L̂2. The existence of this upper
limit follows because is the operator L̂2 − L̂2

z = L̂2
x + L̂2

y of the essentially
positive physical quantity L2

x + L2
y, and its eigenvalues therefore cannot be

negative.

3) This is a particular case of the general theorem, mentioned in §10, which states that
the levels are degenerate when two or more conserved quantities exist whose operators do
not commute. Here the components of the angular momentum are such quantities.

4) Here it is supposed that there is no additional degeneracy leading to the same value of
the energy for different values of the squared angular momentum. This is true for a discrete
spectrum (except for the case of what is called accidental degeneracy in a Coulomb field;
see §36) and in general untrue for the energy levels of a continuous spectrum. However,
even when such additional degeneracy is present, we can always choose the eigenfunctions
so that they correspond to states with definite values of L2, and then we can choose from
these the states with the same values of E and L̂2. This is mathematically expressed by
the fact that the matrices of commuting operators can always be simultaneously brought
into diagonal form. In what follows we shall, in such cases, speak, for the sake of brevity,
as if there were no additional degeneracy, bearing in mind that the results obtained do
not in fact depend on this assumption, by what we have just said.
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Applying the operator L̂zL̂± to the eigenfunction ψM of the operator L̂z

and using the commutation rule 26.12, we obtain

L̂zL̂±ψM = (M + 1)L̂±ψM . (27.6)

Hence we see that the function L̂±ψM is (apart from a normalization con-
stant) the eigenfunction corresponding to the value M ± 1 of the quantity
Lz:

ψM+1 = const · L̂+ψM , ψM−1 = const · L−ψM . (27.7)
If we put M = L in the first of these equations, we must have identically

L̂+ψL = 0 (27.8)

since there is by definition no state with M > L. Applying the operator L̂−
to this equation and using the relation (26.13), we obtain

L̂−L̂+ψL = (L̂2 − L̂2
z − L̂z)ψL = 0.

Since, however, the ψM are common eigenfunctions of the operators L̂2 and
L̂z , we have

L̂2ψL = L2ψL, L̂2
zψL = L2ψL, L̂zψL = LψL,

so that the equation found above gives

L2 = L(L+ 1). (27.9)

Formula (27.9) determines the required eigenvalues of the square of the
angular momentum; the number L takes all positive integral values, includ-
ing zero. For a given value of L, the component Lz = M of the angular
momentum can take the values

M = L,L− 1, . . . ,−L, (27.10)

i.e. 2L + 1 different values in all. The energy level corresponding to the
angular momentum L thus has (2L+1)-fold degeneracy; this is usually called
degeneracy with respect to the direction of the angular momentum. A state
with angular momentum L = 0 (when all three components are also zero) is
not degenerate. The wave function of such a state is spherically symmetric, as
is evident from the fact that the change in it under any infinitesimal rotation,
given by L̂ψ, is in this case zero.

We shall often, for the sake of brevity, and in accordance with custom,
speak of the “angular momentum” L of a system, understanding by this an
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angular momentum whose square is L(L+1); the z-component of the angular
momentum is usually called just the “angular momentum component”.

The angular momentum of a single particle is denoted by the small letter
l, for which formula (27.9) becomes

l2 = l(l + 1). (27.11)

Let us calculate the matrix elements of the quantities Lx and Ly in a
representation in which Lz and L2, as well as the energy, are diagonal (M.
Born, W. Heisenberg and P. Jordan 1926). First of all, we note that, since
the operators L̂x and L̂y commute with the Hamiltonian, their matrices are
diagonal with respect to the energy, i.e. all matrix elements for transitions
between states of different energy (and different angular momentum L) are
zero. Thus it is sufficient to consider the matrix elements for transitions
within a group of states with different values of M , corresponding to a single
degenerate energy level.

It is seen from formulae (27.7) that, in the matrices of the operators L̂+

and L̂−, only those elements are different from zero which correspond to
transitions M − 1 → M and M → M − 1 respectively. Taking this into
account, we find the diagonal matrix elements on both sides of the equation
(26.13), obtaining5)

L(L+ 1) = ⟨M |L+|M − 1⟩⟨M − 1|L−|M⟩+M2 −M.

Noticing that, since the operators and are Hermitian,

⟨M − 1|L−|M⟩ = ⟨M |L+|M − 1⟩∗,

we can rewrite this equation in the form

|⟨M |L+|M − 1⟩|2 = L(L+ 1)−M(M + 1) = (L−M + 1)(L+M),

whence6)

⟨M |L+|M − 1⟩ = ⟨M − 1|L−|M⟩ =
√

(L+M)(L−M + 1). (27.12)

Hence we have for the non-zero matrix elements of the quantities Lx and Ly

themselves

⟨M |Lx|M − 1⟩ = ⟨M − 1|Lx|M⟩ = 1

2

√
(L+M)(L−M + 1),

⟨M |Ly|M − 1⟩ = −⟨M − 1|Ly|M⟩ = − i

2

√
(L+M)(L−M + 1).

(27.13)

5) In the symbols for the matrix elements, we omit for brevity all suffixes with respect
to which they are diagonal (including L).

6) The choice of sign in this formula corresponds to the choice of the phase factors in
the eigenfunctions of the angular momentum.
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The diagonal elements in the matrices of the quantities Lx and Ly are
zero. Since a diagonal matrix element gives the mean value of the quantity
in the corresponding state, it follows that the mean values Lx and Ly are
zero in states having definite values of Lz. Thus, if the angular-momentum
component in a given direction in space has a definite value, the vector L
itself is in that direction.

§ 28. Eigenfunctions of the angular momentum

The wave function of a particle is not completely determined when the
values of l and m are prescribed. This is seen from the fact that the ex-
pressions for the operators of these quantities in spherical polar coordinates
contain only the angles θ and φ, so that their eigenfunctions can contain an
arbitrary factor depending on r. We shall here consider only the angular part
of the wave function which characterizes the eigenfunctions of the angular
momentum, and denote this by Ylm(θ, φ), with the normalization condition:∫

|Ylm|2do = 1,

where do = sin θdθdφ is an element of solid angle.
We shall see that the problem of determining the common eigenfunctions

of the operators l̂2 and l̂z admits of separation of the variables θ and φ, and
these functions can be sought in the form

Ylm = Ψm(φ)Θlm(θ), (28.1)

where Θm(φ) are the eigenfunctions of the operator l̂z, which are given by for-
mula (27.3). Since the functions Θm are already normalized by the condition
(27.4), the Θlm must be normalized by the condition∫ π

0

|Θlm|2 sin θdθ. (28.2)

The functions Ylm with different l or m are automatically orthogonal:∫ 2π

0

∫ π

0

Y ∗
l′m′Ylm sin θdθdφ = δll′δmm′ , (28.3)

as being the eigenfunctions of angular momentum operators corresponding to
different eigenvalues. The functions Ψm(φ) separately are themselves orthog-
onal (see (27.4)), as being the eigenfunctions of the operator l̂z corresponding
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to different eigenvalues m of this operator. The functions Θlm(φ) are not
themselves eigenfunctions of any of the angular momentum operators; they
are mutually orthogonal for different l, but not for different m.

The most direct method of calculating the required functions is by directly
solving the problem of finding the eigenfunctions of the operator l̂2 written
in spherical polar coordinates (formula (26.16)). The equation l̂2ψ = l2ψ is:

1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2 + l(l + 1)ψ = 0.

Substituting in this equation the form (28.1) for ψ, we obtain for the function
Θlm the equation

1

sin θ

d

dθ

(
sin θ

dΘlm

dθ

)
− m2

sin2 θ
Θlm + l(l + 1)Θlm = 0. (28.4)

This equation is well known in the theory of spherical harmonics. It has solu-
tions satisfying the conditions of finiteness and single-valuedness for positive
integral values of l ⩾ |m|, in agreement with the eigenvalues of the angular
momentum obtained above by the matrix method. The corresponding solu-
tions are what are called associated Legendre polynomials Pm

l (cos θ) (see §c
of the Mathematical Appendices). Using the normalization condition (28.2),
we find7)

Θlm = (−1)mil

√
(2l + 1)

2

(l −m)!

(l +m)!
Pm
l (cos θ). (28.5)

Here it is supposed that m ⩾ 0. For negative m, we use the definition

Θl,−|m| = (−1)mΘl|m| (28.6)

In other words, Θlm for m < 0 is given by (28.5) with |m| instead of m and
the factor (−1)m omitted.

Thus the angular momentum eigenfunctions are mathematically just spher-
ical harmonic functions normalized in a particular way. For reference, the
complete expression embodying the above definitions is

Ylm(θ, φ) = (−1)(m+|m|)/2il
[
2l + 1

4π

(l − |m|)!
(l + |m|)!

]1/2
P

|m|
l (cos θ)eimφ. (28.7)

7) The choice of the phase factor is not, of course, determined by the normalization
condition. The definition (28.5) used in this book is the most natural from the viewpoint
of the theory of addition of angular momenta. It differs by a factor il from the one usually
adopted. The advantages of this choice will be clear from the footnotes in §§60, 106 and
107.
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In particular,

Yl0 = il
√

2l + 1

4π
Pl(cos θ). (28.8)

It is evident that the functions differing in the sign of m are related by

(−1)l−mYl,−m = Y ∗
lm. (28.9)

For l = 0 (so that m = 0 also) the spherical harmonic function reduces to
a constant. In other words, the wave functions of the states of a particle with
zero angular momentum depend only on r, i.e. they have complete spherical
symmetry, in agreement with the general statement in §27.

For a given m, the values of l starting from |m| denumerate the successive
eigenvalues of the quantity l2 in order of increasing magnitude. Hence, from
the general theory of the zeros of eigenfunctions (§21), we can deduce that
the function Θlm becomes zero for l − |m| different values of the angle θ; in
other words, it has as nodal lines l − |m| “lines of latitude” on the sphere.
If the complete angular functions are taken with the real factors cosmφ or
sinmφ instead of8) e±i|m|φ, they have as further nodal lines |m| “lines of
longitude”; the total number of nodal lines is thus l.

Finally, we shall show how the functions Θlm may be calculated by the
matrix method. This is done similarly to the calculation of the wave functions
of an oscillator in §23. We start from the equation (27.8):

l̂+Yll = 0.

Using the expression (26.15) for the operator l̂+ and substituting

Yll =
1√
2π

eilφΘll(θ),

we obtain for Θll the equation

dΘll

dθ
− l cot θ ·Θll = 0,

whence Θll = const · sinl θ. Determining the constant from the normalization
condition, we find

Θll = (i)l
√

(2l + 1)!

2

1

2ll!
sinl θ. (28.10)

8) Each such function corresponds to a state in which lz does not have a definite value,
but can have the values ±m with equal probability.
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Next, using (27.12), we write

l̂−Yl,m+1 = (l−)m,m+1Ylm =
√

(l −m)(l +m+ 1)Ylm.

A repeated application of this formula gives√
(l −m)!

(l +m)!
Ylm =

1√
(2l)!

l̂l−m
− Yll.

The right-hand side of this equation is easily calculated by means of the
expression (26.15) for the operator l̂−. We have

l̂−
[
f(θ)eimφ

]
= ei(m−1)φ sin1−m θ

d

(d cos θ)l−m
(f sinm θ)

A repeated application of this formula gives

l̂l−m
− eilφΘll = eimφ sin−m θ

dl−m

(d cos θ)l−m

(
sinl θ ·Θll

)
.

Finally, using these relations and the expression (28.10) for Θll, we obtain
the formula

Θlm(θ) = (−i)l

√
2l + 1

2

(l +m)!

(l −m)!

1

2ll! sinm θ

dl−m

(d cos θ)l−m
sin2l θ, (28.11)

which is the same as (28.5).

§ 29. Matrix elements of vectors

Let us again consider a closed system of particles;9) let f be any scalar
physical quantity characterizing the system, and f̂ the operator correspond-
ing to this quantity. Every scalar is invariant with respect to rotation of the
coordinate system. Hence the scalar operator f̂ does not vary when acted on
by a rotation operator, i.e. it commutes with a rotation operator. We know,
however, that the operator of an infinitely small rotation is the same, apart
from a constant factor, as the angular momentum operator, so that

{f̂ , L̂} = 0 (29.1)
9) All the results in this section are valid also for a particle in a centrally symmetric

field (and in general whenever the total angular momentum of the system is conserved).
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From the commutability of f̂ with the angular momentum operator it follows
that the matrix of f̂ with respect to transitions between states with definite
values of L and M is diagonal with respect to these suffixes. Moreover, since
the specification of M defines only the orientation of the system relative to
the axes of coordinates, and the value of a scalar is independent of this orien-
tation, we can say that the matrix elements ⟨n′LM |f |nLM⟩ are independent
of the value of M ; n conventionally denotes all the quantum numbers other
than L and M which define the state of the system. A formal proof of this
assertion can be obtained from the commutativity of the operators f̂ and L̂+:

f̂ L̂+ − L̂+f̂ = 0. (29.2)

Let us write down the matrix element of this equation corresponding to the
transition n, L,M → n′, L,M + 1. Taking into account the fact that the
matrix of the quantity L+ has only elements with n, L,M → n, L,M +1, we
obtain

⟨n′, L,M + 1|f |n, L,M + 1⟩⟨n, L,M + 1|L+|n, L,M⟩ =
= ⟨n′, L,M + 1|L+|n′, L,M⟩⟨n′, L,M |f |n, L,M⟩,

and since the matrix elements of the quantity L+ are independent of the
suffix n, we find

⟨n′, L,M + 1|f |n, L,M + 1⟩ = ⟨n′, L,M |f |n, L,M⟩, (29.3)

whence it follows that all the quantities ⟨n′, L,M |f |n, L,M⟩ for different M
(the other suffixes being the same) are equal.

If we apply this result to the Hamiltonian itself, we obtain our previous
result that the energy of the stationary states is independent of M , i.e. that
the energy levels have (2L+ 1)-fold degeneracy.

Next, let A be some vector physical quantity characterizing a closed
system. When the system of coordinates is rotated (and, in particular, in
an infinitely small rotation, i.e. when the angular momentum operator is
applied), the components of a vector are transformed into linear functions of
one another. Hence, as a result of the commutation of the operators L̂i with
the operators Âi, we must again obtain components of the same vector, Âi.
The exact form can be found by noticing that, in the particular case where
A is the radius vector of the particle, the formulae (26.4) must be obtained.
Thus we find the commutation rules

{L̂i, Âk} = ieiklÂl (29.4)
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These relations enable us to obtain several results concerning the form
of the matrices of the components of the vector A (M. Born, W. Heisenberg
and P. Jordan 1926). First of all, it is possible to derive selection rules which
determine the transitions for which the matrix elements can be different
from zero. We shall not go through the fairly lengthy calculations here,
however, since it will appear later (§107) that these rules are actually a direct
consequence of the general transformation properties of vector quantities and
can be derived from the latter with hardly any calculation at all. Here we
shall merely give the rules, without proof.

The matrix elements of all the components of a vector can be different
from zero only for transitions in which the angular momentum L changes by
not more than one unit:

L→ L,L+ 1 (29.5)
There is a further selection rule which forbids transitions between any two
states with L = 0. This rule is an obvious consequence of the complete
spherical symmetry of states with angular momentum zero.

The selection rules for the angular momentum component M are different
for the different components of a vector: the matrix elements can be different
from zero for transitions where M changes as follows:

M →M + 1 for A+ = Ax + iAy,

M →M − 1 for A− = Az − iAy,

M →M for Az.

(29.6)

Moreover, it is possible to determine a general form for the matrix el-
ements of a vector as functions of the number M . These important and
frequently used formulae are given here, also without proof, since they are
actually a particular case of more general relations derived in §107 for any
tensor quantities.

The non-zero matrix elements of the quantityAz are given by the formulae

⟨n′LM |Az|nLM⟩ = M√
L(L+ 1)(2L+ 1)

⟨n′L||A||nL⟩,

⟨n′LM |Az|n, L− 1,M⟩ =

√
L2 −M2

L(2L− 1)(2L+ 1)
⟨n′L||A||n, L− 1⟩,

⟨n′, L− 1,M |Az|nLM⟩ =

√
L2 −M2

L(2L− 1)(2L+ 1)
⟨n′, L− 1||A||nL⟩.

(29.7)

Here the symbol
⟨n′L′||A||nL⟩
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denotes a reduced matrix element, a quantity independent of the quantum
number M .10) These matrix elements are related by

⟨n′L′||A||nL⟩ = ⟨nL||A||n′L′⟩∗, (29.8)

which follows directly from the fact that the operator is Âz Hermitian.
The matrix elements of the quantities A− and A+ are also determined by

the reduced matrix elements. The non-zero matrix elements of A− are.

⟨n′, L,M − 1|A−|nLM⟩ =

√
(L−M + 1)(L+M)

L(L+ 1)(2L+ 1)
⟨n′L||A||nL⟩,

⟨n′, L,M − 1|A−|n, L− 1,M⟩ =

√
(L−M + 1)(L−M)

L(2L− 1)(2L+ 1)
⟨n′L||A||n, L− 1⟩,

⟨n′, L−1,M−1|A−|n, L,M⟩ = −

√
(L+M − 1)(L+M)

L(2L− 1)(2L+ 1)
⟨n′, L−1||A||n, L⟩

(29.9)

The matrix elements of A+ need not be written out separately: since Ax and
Ay are real we have

⟨n′L′M ′|A+|nLM⟩ = ⟨nLM |A−|n′L′M ′⟩∗. (29.10)

There is a formula which expresses the matrix elements of the scalar AB
in terms of the reduced matrix elements of the two vector quantities A and
B. The calculation is conveniently carried out by writing the operator ÂB̂
in the form

ÂB̂ =
1

2
(Â+B̂− + Â−B̂+) + ÂzB̂z. (29.11)

The matrix of AB (like that of any scalar) is diagonal with respect to L and
M . A calculation by means of formulae (29.7)–(29.9) gives the result

⟨n′LM |AB|nLM⟩ = 1

2L+ 1

∑
n′′,L′′

⟨n′L||A||n′′L′′⟩⟨n′′L′′||B||nL⟩, (29.12)

where L′′ takes the values L,L± 1.
10) The appearance in formulae (29.7) and (29.9) of denominators which depend on L is in

accordance with the general notation used in §107. The convenience of these denominators
is shown, in particular, by the simple form of equation (29.12) for the matrix elements of
the scalar product of two vectors.

The symbol for the reduced matrix element is to be taken as a whole, in contrast to the
matrix element symbol (see the comments following (11.17)).
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For reference, we shall give the reduced matrix elements for the vector L
itself. A comparison of (29.9) and (27.12) shows that

⟨L||L|L⟩ =
√
L(L+ 1)(2L+ 1),

⟨L− 1||L||L⟩ = ⟨L||L||L− 1⟩ = 0.
(29.13)

A quantity that often occurs in applications is the unit vector n along the
radius vector of the particle. Its reduced matrix elements can be calculated
by finding, for example, the matrix elements of nz = cos θ for a zero angular-
momentum component, m = 0;

⟨l − 1, 0|nz|l0⟩ =
∫ π

0

Θ∗
l−1,0 cos θ ·Θl0 sin θdθ

with the functions Θl0 given by (28.11). The evaluation of the integral11)
gives

⟨l − 1, 0|nz|l0⟩ =
il√

(2l − 1)(2l + 1)
.

The matrix elements for transitions l → l are zero (as for any polar vector of
an individual particle; see (30.8) below). Comparison with (29.7) then gives

⟨l − 1||n||l⟩ = −⟨l||n||l − 1⟩ = i
√
l, ⟨l||n||l⟩ = 0. (29.14)

PROBLEM
Average the tensor nink − (1/3)δik (where n is a unit vector along the radius

vector of a particle) over a state where the magnitude but not the direction of the
vector 1 is given (i.e. lz is indeterminate).

SOLUTION. The required mean value is an operator which can be expressed
in terms of the operator l̂ alone. We seek it in the form

nink −
1

3
δik = a

[
l̂i l̂k + l̂k l̂i −

2

3
δikl(l + 1)

]
;

this is the most general symmetrical tensor of rank two with zero trace that can
be formed from the components of l̂. To determine the constant a we multiply this
equation on the left by l̂i and on the right by l̂k (summing over i and k). Since
the vector n is perpendicular to the vector ℏl̂ = r̂ × p̂, we have ni l̂i = 0. The
product l̂i l̂i l̂k l̂k = (l̂2)2 is replaced by its eigenvalue l2(l + 1)2, and the product is
transformed by means of the commutation relations (26.7) as follows:

l̂i l̂k l̂i l̂k = l̂i l̂i l̂k l̂k − ieikl l̂i l̂l l̂k = (l̂)2 − i

2
eikl l̂i(l̂l l̂k − l̂k l̂l) =

= (l̂)2 +
1

2
eiklelkm l̂i l̂m = (l̂)2 − l̂2 = l2(l + 1)2 − l(l + 1)

11) By l − 1 times integrating by parts with d cos θ; the general formula for integrals of
this type is (107.14).
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(using the fact that eiklemkl = 2δim). After a simple reduction we obtain the result

a = − 1

(2l − 1)(2l + 3)
.

§ 30. Parity of a state

Besides the parallel displacements and rotations of the coordinate sys-
tem, the invariance under which represents the homogeneity and isotropy of
space respectively, there is another transformation which leaves unaltered
the Hamiltonian of a closed system. This is what is called the inversion
transformation, which consists in simultaneously changing the sign of all
the coordinates, i.e. a reversal of the direction of each coordinate axis; a
right-handed coordinate system then becomes left-handed, and vice versa.
The invariance of the Hamiltonian under this transformation expresses the
symmetry of space under mirror reflections.12) In classical mechanics, the
invariance of Hamilton’s function with respect to inversion does not lead to
a conservation law, but the situation is different in quantum mechanics.

Let us denote by P̂ (for “parity”) an inversion operator whose effect on
a wave function ψ(r) is to change the sign of the coordinates:

P̂ψ(r) = ψ(−r) (30.1)

It is easy to find the eigenvalues P of this operator, which are determined by
the equation

P̂ψ(r) = Pψ(r) (30.2)

To do so, we notice that a double application of the inversion operator
amounts to identity: the argument of the function is unchanged. In other
words, we have P̂ 2ψ = P 2ψ = ψ, i.e. P 2 = 1, whence

P = ±1 (30.3)

Thus the eigenfunctions of the inversion operator are either unchanged or
change in sign when acted upon by this operator. In the first case, the wave
function (and the corresponding state) is said to be even, and in the second
it is said to be odd.

The invariance of the Hamiltonian under inversion (i.e. the fact that
the operators Ĥ and P̂ commute) thus expresses the law of conservation of

12) Invariance under inversion exists also for the Hamiltonian of a system of particles in
a centrally symmetric field with the centre at the origin.
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parity: if the state of a closed system has a definite parity (i.e. if it is even,
or odd) then this parity is conserved in the course of time.13)

The angular momentum operator also is invariant under inversion, which
changes the sign of the coordinates and of the operators of differentiation with
respect to them; the operator (26.2) thus remains unaltered. In other words,
the inversion operator commutes with the angular momentum operator, and
this means that the system can have a definite parity simultaneously with
definite values of the angular momentum L and its component M . All states
that differ only in the value ofM have the same parity; this is evident because
the properties of a closed system are independent of its orientation in space,
and it can be formally demonstrated from the commutation rule L̂+P̂ − P̂ L̂+

by the same method as in deriving (29.3) from (29.2).
There are specific parity selection rules for the matrix elements of various

physical quantities. Let us first consider scalars. Here we must distinguish
true scalars, which are unchanged by inversion, from pseudoscalars, which
change sign, for instance the scalar product of an axial and a polar vector
The operator of a true scalar f commutes with P̂ ; hence it follows that, if the
matrix of P is diagonal, then the matrix of f is diagonal also as regards the
parity suffix, i.e. the matrix elements are zero except for transitions g → g
and u → u (where g and u denote even and odd states respectively). For
the operator of a pseudoscalar quantity, we have P̂ f̂ = −f̂ P̂ ; the operators
P̂ and f̂ anticommute. The matrix element of this equation for a transition
g → g is

Pggfgg = −fggPgg,

and so fgg = 0 since Pgg = 1. Similarly we find that fuu = 0. Thus, in the
matrix of a pseudoscalar quantity, only those elements can be different from
zero which correspond to transitions with change of parity. The selection
rules for the matrix elements of scalars are therefore:

true scalars g → g, u→ u;

pseudoscalars g → u, u→ g.
(30.4)

These rules can also be obtained directly from the definition of the matrix
elements. Let us consider, for example, the integral fug =

∫
ψ∗
uψ̂gdq, where

the function ψg is even and ψu odd. When all the coordinates change sign, the
integrand does so if f is a true scalar; on the other hand, the integral taken
over all space cannot change when the variables of integration are renamed.
Hence it follows that fug = −fug, i.e. fug ≡ 0.

13) To avoid misunderstanding, it should be mentioned that this refers to the non-
relativistic theory. There exist interactions in Nature, falling in the realm of relativistic
theory, which violate the conservation of parity.
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We can similarly derive selection rules for vector quantities. Here it must
be recalled that ordinary (polar) vectors change sign on inversion, while axial
vectors (such as the angular momentum vector, which is the vector product
of the two polar vectors p and r) are unchanged by inversion. The selection
rules are found to be:

polar vectors g → u, u→ g;

axial vectors g → g, u→ u.
(30.5)

Let us determine the parity of the state of a single particle with angular
momentum l. The inversion transformation (x → −x, y → −y, z → −z) is,
in spherical polar coordinates, the transformation

r → r, θ → π− θ, φ→ φ+ π. (30.6)

The dependence of the wave function of the particle on the angle is given
by the spherical harmonic Ylm, which, apart from a constant that is here
unimportant, has the form Pm

l (cos θ)eimφ. When φ is replaced by φ+π, the
factor eimφ is multiplied by (−1)m, and when θ is replaced by π−θ, Pm

l (cos θ)
becomes Pm

l (− cos θ) = (−1)l−mPm
l (cos θ). Thus the whole function is mul-

tiplied by (−1)l (independent of m, in agreement with what was said above),
i.e. the parity of a state with a given value of l is

P = (−1)l. (30.7)

We see that all states with even l are even, and all those with odd l are odd.
A vector physical quantity relating to an individual particle can have

non-zero matrix elements only for transitions with l → l or l ± 1 (§29).
Remembering this, and comparing formula (30.7) with what was said above
regarding the change of parity in the matrix elements of vectors, we reach the
result that the matrix elements of vectors relating to an individual particle
are zero except for the transitions:

polar vectors l → l ± 1,

axial vectors l → 1.
(30.8)

§ 31. Addition of angular momenta

Let us consider a system composed of two parts whose interaction is
weak. If the interaction is entirely neglected, then for each part the law of
conservation of angular momentum holds. The angular momentum L of the
whole system can be regarded as the sum of the angular momenta L1 and L2
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of its parts. In the next approximation, when the weak interaction is taken
into account, L1 and L2 are not exactly conserved, but the numbers L1 and
L2 which determine their squares remain “good” quantum numbers suitable
for an approximate description of the state of the system. Regarding the
angular momenta in a classical manner, we can say that in this approximation
L1 and L2 rotate round the direction of L while remaining unchanged in
magnitude.

For such systems the question arises regarding the “law of addition” of
angular momenta: what are the possible values of L for given values of L1

and L2? The law of addition for the components of angular momentum is
evident: since L̂z = L̂1z + L̂2z, it follows that

M =M1 +M2 (31.1)

There is no such simple relation for the operators of the squared angular
momenta, however, and to derive their “law of addition” we reason as follows.

If we take the quantities L2
1,L

2
2, L1z, L2z as a complete set of physical

quantities,14) every state will be determined by the values of the numbers
L1, L2,M1,M2. For given L1 and L2, the numbers M1 and M2 take (2L1 +
1) and (2L2 + 1) different values respectively, so that there are altogether
(2L1 + 1)(2L2 + 1) different states with the same L1 and L2. We denote the
wave functions of the states for this representation by φL1L2M1M2 .

Instead of the above four quantities, we can take the four quantities
L2

1,L
2
2,L

2, Lz as a complete set. Then every state is characterized by the val-
ues of the numbers L1, L2, L,M (we denote the corresponding wave functions
by ψL1L2M1M2). For given L1 and L2, there must of course be (2L1+1)(2L2+1)
different states as before, i.e. for given L1 and L2 the pair of numbers L and
M must take (2L1 + 1)(2L2 + 1) pairs of values. These values can be deter-
mined as follows.

By adding the various possible values of M1 and M2, we get the corre-
sponding values of M , as shown below:

14) Together with such other quantities as form a complete set when combined with these
four. These other quantities play no part in the subsequent discussion, and for brevity we
shall ignore them entirely, and conventionally call the above four quantities a complete
set.
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M1 M2 M
L1 L2 L1 + L2

L1 L2 − 1 L1+L2−1
L1 − 1 L2 L1+L2−1
L1 − 1 L2 − 1 L1+L2−2
L1 L2 − 2 L1+L2−2
L1 − 2 L2 L1+L2−2
… … …

We see that the greatest possible value of M is M = L1 + L2, corre-
sponding to one state φ (one pair of values of M1 and M2). The great-
est possible value of M in the states ψ, and hence the greatest possible
value of L also, is therefore L1 + L2. Next, there are two states φ with
M = L1 + L2 − 1. Consequently, there must also be two states ψ with this
value of M ; one of them is the state with L = L1 + L2 (and M = L − 1),
and the other is that with L = L1 + L2 − 1 (and M = L). For the value
M = L1+L2− 2 there are three different states φ. This means that, besides
the values L = L1 + L2, L = L1 + L2 − 1, the value L = L1 + L2 − 2 can
occur.

The argument can be continued in this way so long as a decrease of M by
1 increases by 1 the number of states with a given M . It is easily seen that
this is so until M reaches the value |L1−L2|. When M decreases further, the
number of states no longer increases, remaining equal to 2L2+1 (if L2 ⩽ L1)
. Thus |L1 − L2| is the least possible value of L, and we arrive at the result
that, for given L1 and L2, the number L can take the values

L = L1 + L2, L1 + L2 − 1, . . . , |L1 − L2|, (31.2)

that is 2L2 + 1 different values altogether (supposing that L2 ⩽ L1). It is
easy to verify that we do in fact obtain (2L1 + 1)(2L2 + 1) different values
of the pair of numbers M , L. Here it is important to note that, if we ignore
the 2L+ 1 values of M for a given L̂, then only one state will correspond to
each of the possible values (31.2) of L.

This result can be illustrated by means of what is called the vector model.
If we take two vectors L1,L2 of lengths L1 and L2, then the values of L are
represented by the integral lengths of the vectors L which are obtained by
vector addition of L1 and L2; the greatest value of L is L1 + L2, which is
obtained when L1 and L2 are parallel, and the least value is |L1 −L2|, when
L1 and L2 are antiparallel.

In states with definite values of the angular momenta L1, L2 and of the
total angular momentum L, the scalar products L1L2, LL1 and LL2 also
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have definite values. These values are easily found. To calculate L1L2, we
write L̂ = L̂1 + L̂2 or, squaring and transposing,

2L̂1L̂2 = L̂
2 − L̂2

1 − L̂2
2.

Replacing the operators on the right-hand side of this equation by their
eigenvalues, we obtain the eigenvalue of the operator on the left-hand side:

L1L2 =
1

2
{L(L+ 1)− L1(L1 + 1)− L2(L2 + 1)}. (31.3)

Similarly we find

LL1 =
1

2
{L(L+ 1) + L1(L1 + 1)− L2(L2 + 1)} (31.4)

Let us now determine the “addition rule for parities”. The wave function
Ψ of a system consisting of two independent parts is the product of the wave
functions ψ1 and Ψ2 of these parts. Hence it is clear that if the latter are of
the same parity (i.e. both change sign, or both do not change sign, when the
sign of all the coordinates is reversed), then the wave function of the whole
system is even. On the other hand, if Ψ1 and Ψ2 are of opposite parity, then
the function Ψ is odd. These statements may be written

P = P1P2 (31.5)

where P is the parity of the whole system and P1, P2 those of its parts. This
rule can, of course, be generalized at once to the case of a system composed
of any number of non-interacting parts.

In particular, if we are concerned with a system of particles in a centrally
symmetric field (the mutual interaction of the particles being supposed weak),
then the parity of the state of the whole system is given by

P = (−1)l1+l2+... (31.6)

see (30.7). We emphasize that the exponent here contains the algebraic sum
of the angular momenta li, and this is not in general the same as their “vector
sum”, i.e. the angular momentum L of the system.

If a closed system disintegrates (under the action of internal forces), the
total angular momentum and parity must be conserved. This circumstance
may render it impossible for a system to disintegrate, even if this is energet-
ically possible.

For instance, let us consider an atom in an even state with angular mo-
mentum L = 0, which is able, so far as energy considerations go, to disinte-
grate into a free electron and an ion in an odd state with the same angular
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momentum L = 0. It is easy to see that in fact no such disintegration can
occur (it is, as we say, forbidden). For, by virtue of the law of conservation
of angular momentum, the free electron would also have to have zero angular
momentum, and therefore be in an even state (P = (1)0 = +1); the state of
the system ion+electron would then be odd, however, whereas the original
state of the atom was even.
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CHAPTER VI

PERTURBATION THEORY

§ 38. Perturbations independent of time

THE exact solution of Schrödinger’s equation can be found only in a
comparatively small number of the simplest cases. The majority of problems
in quantum mechanics lead to equations which are too complex to be solved
exactly. Often, however, quantities of different orders of magnitude appear
in the conditions of the problem; among them there may be small quantities
such that, when they are neglected, the problem is so much simplified that
its exact solution becomes possible. In such cases, the first step in solving
the physical problem concerned is to solve exactly the simplified problem,
and the second step is to calculate approximately the errors due to the small
terms that have been neglected in the simplified problem. There is a general
method, of calculating these errors; it is called perturbation theory.

Let us suppose that the Hamiltonian of a given physical system is of the
form

Ĥ = Ĥ0 + V̂

where V̂ is a small correction (or perturbation) to the unperturbed operator Ĥ0

In §§40, 39 we shall consider perturbations V̂ which do not depend explicitly
on time (the same is assumed regarding Ĥ0 also). The conditions which
are necessary for it to be permissible to regard the operator V̂ as “small”
compared with the operator Ĥ will be derived below.

The problem of perturbation theory for a discrete spectrum can be formu-
lated as follows. It is assumed that the eigenfunctions ψ(0)

n and eigenvalues
E

(0)
n of the discrete spectrum of the unperturbed operator Ĥ0 are known, i.e.

the exact solutions of the equation

Ĥ0ψ
(0) = E(0)ψ(0) (38.1)

are known. It is desired to find approximate solutions of the equation

Ĥψ = (Ĥ0 + V̂ )ψ = Eψ, (38.2)

123
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i.e. approximate expressions for the eigenfunctions ψn and eigenvalues En of
the perturbed operator Ĥ.

In this section we shall assume that no eigenvalue of the operator Ĥ0 is
degenerate. Moreover, to simplify our results, we shall at first suppose that
there is only a discrete spectrum of energy levels.

The calculations are conveniently performed in matrix form throughout.
To do this, we expand the required function ψ in terms of the functions

ψ
(0)
n :

ψ =
∑
m

cmψ
(0)
m , (38.3)

Substituting this expansion in (38.2) we obtain∑
m

cm(E
(0)
m + V̂ )ψ(0)

m =
∑
m

cmEψ
(0)
m ;

multiplying both sides of this equation by ψ(0)∗
k and integrating, we find

(E − E
(0)
k )ck =

∑
m

Vkmcm. (38.4)

Here we have introduced the matrix Vkm of the perturbation operator V̂ ,
defined with respect to the unperturbed functions ψ(0)

m :

Vkm =

∫
ψ

(0)∗
k V̂ ψ(0)

m dq. (38.5)

We shall seek the values of the coefficients cm and the energy E in the
form of series

E = E(0) + E(1) + . . . , cm = c(0)m + c(1)m + c(2)m + . . . ,

where the quantities E(1) and c
(1)
m are of the same order of smallness as

the perturbation V̂ , the quantities E(2) and c
(2)
m are of the second order of

smallness, and so on.
Let us determine the corrections to the nth eigenvalue and eigenfunction,

putting accordingly c(0)n = 1, c(0)n = 0 for m ̸= n. To find the first approxima-
tion, we substitute in equation (38.4) E = E

(0)
n + E

(1)
n , ck = c

(0)
k + c

(1)
k , and

retain only terms of the first order. The equation with k = n gives

E(1)
n = Vnn =

∫
ψ(0)∗
n V̂ ψ(0)

n dq. (38.6)

Thus the first-order correction to the eigenvalue E(0)
n is equal to the mean

value of the perturbation in the state ψ(0)
n .



Chap. VI PERTURBATION THEORY 125

The equation (38.4) with k ̸= n gives

c
(1)
k =

Vkn

E
(0)
n − E

(0)
k

, k ̸= n, (38.7)

while c(1)n remains arbitrary; it must be chosen so that the function ψn =

ψ
(0)
n + ψ

(1)
n is normalized up to and including terms of the first order. For

this we must put c(1)n = 0. For the functions

ψ(1)
n =

∑
m

′ Vmn

E
(0)
n − E

(0)
m

ψ(0)
m (38.8)

(the prime means that the term with m = n is omitted from the sum) are
orthogonal to ψ0

n, and hence the integral of |ψ(0)
n + ψ

(1)
n |2 differs from unity

only by a quantity of the second order of smallness.
Formula (38.8) determines the correction to the wave functions in the

first approximation. Incidentally, we see from this formula the condition for
the applicability of the above method. This condition is that the inequality

|Vmn| ≪ |E(0)
n − E(0)

m | (38.9)

must hold, i.e. the matrix elements of the perturbation must be small com-
pared with the corresponding differences between the unperturbed energy
levels.

Next, let us determine the correction to the eigenvalue E(0)
n in the second

approximation. To do this, we substitute in (38.4) E = E
(0)
n + E

(1)
n + E

(2)
n ,

ck = c
(0)
k + c

(1)
k + c

(2)
k , and examine the terms of the second order of smallness.

The equation with k = n gives

E(2)
n c0n =

∑
m

′
Vnmc

(1)
m ,

whence
E(2)

n =
∑
m

′ |Vmn|2

E
(0)
n − E

(0)
m

(38.10)

(we have substituted c(1)m from (38.7), and used the fact that, since the oper-
ator V̂ is Hermitian, Vmn = V ∗

nm).
We notice that the correction in the second approximation to the energy

of the normal state is always negative; for, since E(0)
n then corresponds to the

lowest value of the energy, all the terms in the sum (38.10) are negative.
The further approximations can be calculated in a similar manner.
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The results obtained can be generalized at once to the case where the op-
erator Ĥ0 has also a continuous spectrum (but the perturbation is applied,
as before, to a state of the discrete spectrum). To do so, we need only add to
the sums over the discrete spectrum the corresponding integrals over the con-
tinuous spectrum. We shall distinguish the various states of the continuous
spectrum by the suffix ν, which takes a continuous range of values; by ν we
conventionally understand an assembly of values of quantities sufficient for
a complete description of the state (if the states of the continuous spectrum
are degenerate, which is almost always the case, the value of the energy alone
does not suffice to determine the state).1) Then, for instance, we must write
instead of (38.8)

ψ(1)
n =

∑
m

′ Vmn

E
(0)
n − E

(0)
m

ψ(0)
m +

∫
Vνn

E
(0)
n − Eν

ψ(0)
ν dν (38.11)

and similarly for the other formulae.
It is useful to note also the formula for the perturbed value of the matrix

element of a physical quantity f , calculated as far as terms of the first order
by using the functions ψn = ψ

(0)
n + ψ

(1)
n , with ψ

(1)
n given by (38.8). The

following expression is easily obtained:

fnm = f (0)
nm +

∑
k

′ Vnkf
(0)
km

E
(0)
n − E

(0)
k

+
∑
k

′ Vkmf
(0)
nk

E
(0)
m − E

(0)
k

(38.12)

In the first sum k ̸= n, while in the second k ̸= m.
PROBLEMS
1. Determine the correction ψ

(2)
n in the second approximation to the eigen-

functions.
SOLUTION. The coefficients c(2)k (k ̸= n) are calculated from equations (38.4)

with k ̸= n, written out up to terms of the second order, and the coefficient c(2)n is
chosen so that the function ψn = ψ

(0)
n + ψ

(1)
n + ψ

(2)
n is normalized up to terms of

the second order. As a result we find

ψ(2)
n =

∑
m

′∑
k

′ VmkVkn
ℏ2ωnkωnm

ψ(0)
m −

∑
m

′VnnVmn

ℏ2ω2
nm

ψ(0)
m − ψ

(0)
n

2

∑
m

′ |Vmn|2

ℏ2ω2
nm

,

where we have introduced the frequencies

ωnm =
1

ℏ
(E(0)

n − E(0)
m ).

1) Here the wave functions ψ(0)
ν must be normalized by delta functions of the quantities

ν.



Chap. VI PERTURBATION THEORY 127

2. Determine the correction in the third approximation to the eigenvalues of
the energy

SOLUTION. Writing out the terms of the third order of smallness in equation
(38.4) with k = n, we obtain

E(3)
n =

∑
k

′∑
m

′VnmVmkVkn
ℏ2ωmnωkn

− Vnn
∑
m

′ |Vnm|2

ℏ2ω2
mn

.

3. Determine the energy levels of an anharmonic linear oscillator whose Hamil-
tonian is

Ĥ =
p̂2

2m
+
mω2x2

2
+ αx3 + βx4.

SOLUTION. The matrix elements of x3 and x4 can be obtained directly ac-
cording to the rule of matrix multiplication, using the expression (23.4) for the
matrix elements of x. We find for the matrix elements of x3 that are not zero(

x3
)
n−3,n

=
(
x3
)
n,n−3

=

(
ℏ
mω

)3/2
√
n(n− 1)(n− 2)

8
,

(
x3
)
n−1,n

=
(
x3
)
n,n−1

=

(
ℏ
mω

)3/2
√

9n3

8
.

The diagonal elements in this matrix vanish, so that the correction in the first
approximation due to the term αx3 in the Hamiltonian (regarded as a perturbation
of the harmonic oscillator) is zero. The correction in the second approximation
due to this term is of the same order as that in the first approximation due to the
term βx4. The diagonal matrix elements of x4 are

(
x4
)
n,n

=

(
ℏ
mω

)2

· 3
4
(2n2 + 2n+ 1).

Using the general formulae (38.6) and (38.10), we find the following approximate
expression for the energy levels of the anharmonic oscillator:

En = ℏω
(
n+

1

2

)
− 15

4

α2

ℏω

(
ℏ
mω

)3(
n2 + n+

11

30

)
+

3

2
β

(
ℏ
mω

)2(
n2 + n+

1

2

)
.

4. A spherical potential well with infinitely high walls is subjected to a small
deformation (without change of volume) which gives it the form of a slightly prolate
or oblate spheroid with semi-axes a = b and c. Find the splitting of the energy
levels of a particle in the deformed well (A. B. Migdal 1959).

SOLUTION. The equation of the well boundary is

x2 + y2

a2
+
z2

c2
= 1

and by the change of variables x → ax/R, y → ay/R, z → cz/R it is converted
into x2 + y2 + z2 = R2 the equation of a sphere with radius R. The same change
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of variables converts the Hamiltonian of the particle, Ĥ = p̂2/2M = −ℏ2∆/2M
(where M is the mass of the particle and the energy is measured from the bottom
of the well) into Ĥ = Ĥ0 + V̂ , where

Ĥ0 = − ℏ2

2M
∆, V̂ = − ℏ2

2M

[(
R2

a2
− 1

)(
∂2

∂x2
+

∂2

∂y2

)
+

(
R2

c2
− 1

)
∂2

∂z2

]
.

Thus the problem of motion in an ellipsoidal well reduces to that of motion in a
spherical well. If the ellipsoid is almost a sphere of radius R = (a2c)1/3, V̂ may be
regarded as a small perturbation. If the ellipsoidality β(|β| ≪ 1) is defined by

α ≈ R

(
1− β

3

)
, c ≈ R

(
1 +

2β

3

)
,

the perturbation operator may be written

V̂ =
β

3M
(p̂2 − 3p̂2z).

In the first order of perturbation theory, the change in the energy levels of the
particle from their values in the spherical well is

∆Enlm = Enlm − E
(0)
nl = ⟨nlm|V |nlm⟩

where l and m are the angular momentum of the particle and its component along
the axis of the spheroid; n numbers the levels in the spherical well for a given l,
which are independent of m. Since p2 − 3p2z is the zz-component of an irreducible
tensor, δikp2 − 3pipk, with zero trace, we find from (107.2) and (107.6) that the
matrix element ⟨nlm|V |nln⟩ is proportional to

(−1)m
(

l 2 l
−m 0 m

)
,

and therefore
⟨nlm|V |nlm⟩ =

(
1− 3m2

l(l + 1)

)
⟨nl0|V |nl0⟩

A table of 3j-symbols is given in §106.
Next,

⟨nl0|V |nl0⟩ = 2

3
βE

(0)
nl + β

ℏ2

M

〈
nl0

∣∣∣∣ ∂2∂z2
∣∣∣∣nl0〉 =

=
2

3
βE

(0)
nl − βℏ2

M

∫ ∣∣∣∣∂ψnl0

∂z

∣∣∣∣2 r2drdo
in the first term we have used Schrödinger’s equation Ĥ0ψnlm = E

(0)
nl ψnlm for a

spherical well, and in the second term integrated by parts. With Yl0 in the form
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(28.11), we find the derivative of ψnl0 = Rnl(r)Yl0(θ, φ) to be

∂

∂z
ψnl0 =

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
ψnl0 =

= − i(l + 1)

[4(l + 1)2 − 1]1/2

(
R′

nl −
l

r
Rnl

)
Yl+1,0+

+
il

[4l2 − 1]1/2

(
R′

nl +
l + 1

r
Rnl

)
Yl−1,0.

The radial integrals are calculated by means of the formulae∫ ∞

0
RnlR

′
nlrdr = −1

2

∫ ∞

0
R2

nldr.

∫ ∞

0
R′2

nlr
2dr =

2M

ℏ2
E

(0)
nl − l(l + 1)

∫ ∞

0
R2

nldr,

which are derived by integrating by parts and using the radial Schrödinger’s equa-
tion (??)

R′′
nl +

2

r
R′′

nl −
l(l + 1)

r2
Rnl = −2M

ℏ2
E

(0)
nl .

The terms containing integrals of R2
nl cancel, and the final result is

∆Enlm = 4β
l(l + 1)

(2l − 1)(2l + 3)

[
m2

l(l + 1)
− 1

3

]
E

(0)
nl .

Note that
1

2l + 1

l∑
m=−l

Enlm = E
(0)
nl ,

i.e. the “centre of gravity” of the multiplet is not shifted.

§ 39. The secular equation

Let us now turn to the case where the unperturbed operator Ĥ0 has degen-
erate eigenvalues. We denote by ψ

(0)
n , ψ

(0)
n′ , . . . the eigenfunctions belonging

to the same eigenvalue E(0)
n of the energy. The choice of these functions is,

as we know, not unique; instead of them we can choose any s (where s is the
degree of degeneracy of the level E(0)

n ) independent linear combinations of
these functions. The choice ceases to be arbitrary, however, if we subject the
wave functions to the requirement that the change in them under the action
of the small applied perturbation should be small.
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At present we shall understand by ψ(0)
n , ψ

(0)
n′ , . . . some arbitrarily selected

unperturbed eigenfunctions. The correct functions in the zeroth approxima-
tion are linear combinations of the form

c(0)n ψ(0)
n + c

(0)
n′ ψ

(0)
n′ + . . .

The coefficients in these combinations are determined, together with the
corrections in the first approximation to the eigenvalues, as follows.

We write out equations (38.4) with k = n, n′, . . . , and substitute in them,
in the first approximation, E = E

(0)
n +E(1); for the quantities ck it suffices to

take the zero-order values cn = c
(0)
n , cn′ = c

(0)
n′ , . . . ; cm = 0 for m ̸= n, n′, . . . .

We then obtain
E(1)c(0)n =

∑
n′

Vnn′c
(0)
n′

or ∑
n′

(
Vnn′ − E(1)δnn′

)
c
(0)
n′ = 0, (39.1)

where n, n′ take all values denumerating states belonging to the given un-
perturbed eigenvalue E(0)

n . This system of homogeneous linear equations for
the quantities c(0)n has solutions which are not all zero if the determinant of
the coefficients of the unknowns vanishes. Thus we obtain the equation∣∣Vnn′ − E(1)δnn′

∣∣ = 0. (39.2)

This equation is of the sth degree in E(1) and has, in general, s different real
roots. These roots are the required corrections to the eigenvalues in the first
approximation. Equation (39.2) is called the secular equation.2) We notice
that the sum of its roots is equal to the sum of the diagonal matrix elements
Vnn, Vn′n′ , . . . (this being the coefficient of [E(1)]s−1 in the equation).

Substituting in turn the roots of equation (39.2) in the system (39.1) and
solving, we find the coefficients c(0)n and so determine the eigenfunctions in
the zeroth approximation.

As a result of the perturbation, an originally degenerate energy level
ceases in general to be degenerate (the roots of equation (39.2) are in general
distinct); the perturbation removes the degeneracy, as we say. The removal
of the degeneracy may be either total or partial (in the latter case, after
the perturbation has been applied, there remains a degeneracy of degree less
than the original one).

It may happen that for some reason all the matrix elements are particu-
larly small (or even zero) for transitions within a group of mutually degen-
erate states n, n′, . . . . It may then be useful to take into account not only

2) The name is taken from celestial mechanics.
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in the first order the matrix elements Vnn′ . but also in the higher orders the
matrix elements Vnm(m ̸= n, n′, . . . ) for transitions to states with a different
energy. Let us do this for the matrix elements Vmn in the second order.

In equation (38.4) with k = n we put on the left E = E
(0)
n +E

(1)
n (retain-

ing the notation E(1) for the correction to the energy in the approximation
considered), and replace cn by c(0)n . Since c(0)m = 0 for all m ̸= n, n′ we have

E(1)c(0)n =
∑
m

Vnmc
(1)
m +

∑
n′

Vnn′c
(0)
n′ . (39.3)

The equations (38.4) with k = m ̸= n, n′, . . . give as far as the first-order
terms

(E(0)
n − E(0)

m )c(1)m =

(1)∑
n′

=
∑
n′

Vmn′c
(0)
n′ ,

whence
c(1)m =

∑
n′

Vmn′

E
(0)
n − E

(0)
m

c
(0)
n′ .

Substitution in (39.3) gives

E(1)c(0)n =
∑
n′

c
(0)
n′

(
Vnn′ +

∑
m

VnmVmn′

E
(0)
n − E

(0)
m

)
.

These equations replace (39.1); the condition for them to be compatible again
leads to the secular equation, which differs from (39.2) by the change

Vnn′ → Vnn′ +
∑
m

VnmVmn′

E
(0)
n − E

(0)
m

(39.4)

PROBLEMS
1. Determine the corrections to the eigenvalue in the first approximation and

the correct functions in the zeroth approximation, for a doubly degenerate level.
SOLUTION. Equation (39.2) here has the form∣∣∣∣ V11 − E(1) V21

V12 V22 − E(1)

∣∣∣∣ = 0

(the suffixes 1 and 2 correspond to two arbitrarily chosen unperturbed eigenfunc-
tions ψ(0)

1 and ψ
(0)
1 of the degenerate level in question). Solving, we find

E(1) =
1

2

[
V11 + V22 ± ℏω(1)

]
, (1)
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with the notation
ℏω(1) =

√
(V11 − V22)2 + 4|V12|2

for the difference between the two values of the correction E(1) Solving also equa-
tions (39.1) with these values of E(1), we obtain for the coefficients in the correct
normalized function in the zeroth approximation, ψ(0) = c

(0)
1 ψ

(0)
1 + c

(0)
2 ψ

(0)
2 , the

values

c
(0)
1 =

{
V12

2|V12|

[
1± V11 − V22

ℏω(1)

]}1/2

,

c
(0)
2 = ±

{
V21

2|V12|

[
1∓ V11 − V22

ℏω(1)

]}1/2

.

(2)

2. Derive the formulae for the correction to the eigenfunctions in the first
approximation and to the eigenvalues in the second approximation.

SOLUTION. We shall suppose that the correct functions in the zeroth approx-
imation are chosen as the functions ψ(0)

n . The matrix Vnn′ , defined with respect to
these is clearly diagonal with respect to the suffixes n, n′ (belonging to the same
group of functions of a degenerate level), and the diagonal elements Vnn, Vn′n′ , are
equal to the corresponding corrections E(1)

n , E
(1)
n′ , . . . in the first approximation.

Let us consider a perturbation of the eigenfunction ψ
(0)
n , so that in the zeroth

approximation E = E
(0)
n , c

(0)
n = 1, c

(0)
m = 0 for m ̸= n. In the first approximation

E = E
(0)
n + Vnn, cn = 1 + c

(1)
n , cm = c

(1)
m . We write out from the system (38.4) the

equation with k ̸= n, n′, . . . , retaining in it terms of the first order:

(E(0)
n − E

(0)
k )c

(1)
k = Vknc

(0)
n = Vkn,

whence
c
(1)
k =

Vkn

E
(0)
n − E

(0)
k

for k ̸= n, n′, . . . (1)

Next we write out the equation with k = n′, retaining in it terms of the second
order:

E(1)
n c

(1)
n′ = Vn′n′c

(1)
n′ +

∑
m

′
Vn′mc

(1)
m

(the terms with m = n, n′, . . . are omitted in the sum over m). Substituting
E

(1)
n = Vnn and the expression (1) for c(1)m , we obtain for n′ ̸= n

c
(1)
n′ =

1

(Vnn − Vn′n′)

∑
m

′ Vn′mVmn

E
(0)
n − E

(0)
m

(2)

(In this approximation the coefficient c(1)n is zero.) Formulae (1) and (2) determine
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the correction ψ
(1)
n =

∑
m c

(1)
m ψ

(0)
m to the eigenfunctions in the first approxima-

tion.3)
Finally, writing out the second-order terms in equation (38.4) with k = n, we

obtain for the second-order corrections to the energy the formula

E(2)
n =

∑
m

′ VnmVmn

E
(0)
n − E

(0)
m

(3)

which is formally identical with (38.10).
3. At the initial instant t = 0, a system is in a state ψ(0)

1 which belongs to a
doubly degenerate level. Determine the probability that, at a subsequent instant
t, the system will be in the state ψ(0)

2 with the same energy; the transition occurs
under the action of a constant perturbation.

SOLUTION. We form the correct functions in the zeroth approximation,

ψ = c1ψ1 + c2ψ2, ψ′ = c′1ψ1 + c′2ψ2,

wherec1, c2; c′1, c′2 are two pairs of coefficients determined by formulae (1) of Prob-
lem 1 (for brevity, we omit the index (0) on all quantities).

Conversely,

ψ1 =
c′2ψ − c2ψ

′

c1c′2 − c′1c2
.

The functions ψ and ψ′ belong to states with perturbed energies E + E(1) and
E+E(1)′, where E(1) and E(1)′ are the two values of the correction (1) in Problem
1. On introducing the time factors we pass to the time-dependent wave functions:

ψ1 =
exp(−(i/ℏ)Et)
c1c′2 − c′1c2

[
c′2 exp

(
− i

ℏ
E(1)t

)
− c2ψ

′ exp

(
− i

ℏ
E(1)′t

)]
(at time t = 0,Ψ1 = ψ1). Finally, again expressing ψ,ψ′ in terms of ψ1, ψ2, we
obtain Ψ1, as a linear combination of ψ1, and ψ2, with coefficients depending
on time. The squared modulus of the coefficient of ψ2 determines the required
transition probability w21. Calculation with (1) and (2) from Problem 1 gives

w21 = 2
|V12|2

(ℏω(1))2
[1− cos(ω(1)t)].

We see that the probability varies periodically with time, with frequency ω(1).

3) Note that the condition for the quantities (1) and (2) to be small (and therefore
the condition for this method of perturbation theory to be applicable) again requires the
conditions (38.9) to be satisfied only for transitions between states belonging to different
energy levels. Transitions between states belonging to the same degenerate level are taken
into account exactly (in a certain sense) by the secular equation.
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For times t which are small compared with the period in question, the expres-
sion in the braces, and therefore w21, is proportional to t2:

w21 =
1

ℏ2
|V21|2t2;

This formula can be very simply obtained by the method given in the next section
(using equation (40.4)).

§ 40. Perturbations depending on time

Let us now go on to study perturbations depending explicitly on time.
We cannot speak in this case of corrections to the eigenvalues, since, when
the Hamiltonian is time-dependent (as will be the perturbed operator Ĥ =

Ĥ0+V̂ (t)), the energy is not conserved, so that there are no stationary states.
The problem here consists in approximately calculating the wave functions
from those of the stationary states of the unperturbed system.

To do this, we shall apply a method analogous to the well-known method
of varying the constants to solve linear differential equations (P. A. M. Dirac
1926). Let Ψ

(0)
k be the wave functions (including the time factor) of the

stationary states of the unperturbed system. Then an arbitrary solution of
the unperturbed wave equation can be written in the form of a sum Ψ =∑
akΨ

(0)
k . We shall now seek the solution of the perturbed equation

iℏ
∂Ψ

∂t
= (Ĥ0 + V̂ )Ψ (40.1)

in the form of a sum
Ψ =

∑
k

ak(t)Ψ
(0)
k , (40.2)

where the expansion coefficients are functions of time. Substituting (40.2) in
(40.1), and recalling that the functions Ψ

(0)
k satisfy the equation

iℏ
∂Ψ

(0)
k

∂t
= Ĥ0Ψ

(0)
k ,

we obtain
iℏ
∑
k

Ψ
(0)
k

dak
dt

=
∑
k

akV̂Ψ
(0)
k .

Multiplying both sides of this equation on the left by Ψ
(0)∗
m and integrat-

ing, we have
iℏ
dam
dt

=
∑
k

Vmk(t)ak, (40.3)
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where

Vmk(t) =

∫
Ψ(0)∗

m V̂Ψ
(0)
k dq = Vmke

iωmkt, ωmk =
E

(0)
m − E

(0)
k

ℏ

are the matrix elements of the perturbation, including the time factor (and
it must be borne in mind that, when V depends explicitly on time, the
quantities Vmk also are functions of time).

As the unperturbed wave function we take the wave function of the nth
stationary state, for which the corresponding values of the coefficients in
(40.2) are a(0)n = 1, a

(0)
k = 0 for k ̸= n. To find the first approximation, we

seek ak in the form ak = a
(0)
k + a

(1)
k substituting ak = a

(0)
k on the right-hand

side of equation (40.3), which already contains the small quantities Vmk. This
gives

iℏ
da

(1)
k

dt
= Vkn(t) (40.4)

In order to show the unperturbed function to which the correction is being
calculated, we introduce a second suffix in the coefficients ak, writing

Ψn =
∑
n

akn(t)Ψ
(0)
k .

Accordingly, we write the result of integrating equation (40.4) in the form

a
(1)
kn = − i

ℏ

∫
Vkn(t)dt = − i

ℏ

∫
Vkne

iωkntdt. (40.5)

This determines the wave functions in the first approximation.
Let us now consider in more detail the important case of a perturbation

which is periodic with respect to time, of the form

V̂ = F̂ e−iωt + Ĝeiωt, (40.6)

where F̂ and Ĝ are operators independent of time. Since V is Hermitian, we
must have

F̂ e−iωt + Ĝeiωt = F̂ †eiωt + Ĝ†e−iωt

whence Ĝ = F̂ †, i.e.
Gnm = F ∗

mn (40.7)

This relation shows that

Vkn(t) = Vkne
iωknt = Fkne

i(ωkn−ω)t + F ∗
nke

i(ωkn+ω)t. (40.8)
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Substituting in (40.5) and integrating, we obtain the following expression
for the expansion coefficients of the wave functions:

a
(1)
kn = −Fkne

i(ωkn−ω)t

ℏ(ωkn − ω)
− F ∗

kne
i(ωkn+ω)t

ℏ(ωkn + ω)
. (40.9)

These expressions are applicable if none of the denominators vanishes,4) i.e.
if for all k (and the given n)

E
(0)
k − E(0)

n ̸= ±ℏω (40.10)

In a number of applications it is useful to have expressions for the matrix
elements of an arbitrary quantity f , defined with respect to the perturbed
wave functions. In the first approximation we have

fnm(t) = f (0)
nm(t) + f (1)

nm(t),

where
f (0)
nm(t) =

∫
Ψ(0)∗

n f̂Ψ(0)
m dq = f (0)

nme
iωnmt,

f (1)
nm(t) =

∫
(Ψ(0)∗

n f̂Ψ(1)
m +Ψ(1)∗

n f̂Ψ(0)
m )dq.

Substituting here Ψ(1)
n =

∑
k a

(1)
knΨ

(0)
k , with a(1)kn determined by formula (40.9),

it is easy to obtain the required expression

f (1)
nm(t) = −eiωnmt

∑
k

{[
f
(0)
nk Fkm

ℏ(ωkm − ω)
+

f
(0)
kmFnk

ℏ(ωkn + ω)

]
e−iωt+

+

[
f
(0)
nk F

∗
mk

ℏ(ωkm + ω)
+

f
(0)
kmF

∗
nk

ℏ(ωkn − ω)

]
eiωt

}
. (40.11)

This formula is applicable if none of its terms becomes large, i.e. if none of
the frequencies ωkn, ωkm is too close to ω. For ω = 0 we return to formula
(38.12).

In all the formulae given here, it is understood that there is only a discrete
spectrum of unperturbed energy levels. However, these formulae can be
immediately generalized to the case where there is also a continuous spectrum
(as before, we are concerned with the perturbation of states of the discrete
spectrum); this is done by simply adding to the sums over the levels of the

4) More precisely, if none is so small that the quantities a(1)kn are no longer small compared
with unity.



Chap. VI PERTURBATION THEORY 137

discrete spectrum the corresponding integrals over the continuous spectrum.
Here it is necessary for the denominators ωkn ±ω in formulae (40.9), (40.11)
to be non-zero when the energy E(0)

k takes all values, not only of the discrete
but also of the continuous spectrum. If, as usually happens, the continuous
spectrum lies above all the levels of the discrete spectrum, then, for instance
the condition (40.10) must be supplemented by the condition

E
(0)
min − E(0)

n > ℏω (40.12)

where E(0)
min is the energy of the lowest level of the continuous spectrum.

PROBLEM
1. Determine the change in the nth and mth solutions of Schrödinger’s equation

in the presence of a periodic perturbation (of the form (40.6)), of frequency � such
that E(0)

m E
(0)
n = ℏ(ω + ε), where ε is a small quantity.

SOLUTION. The method developed in the text is here inapplicable, since the
coefficient a(1)mn in (40.9) becomes large. We start afresh from the exact equations
(40.3), with V (t)

mk given by (40.8). It is evident that the most important effect is due
to those terms, in the sums on the right-hand side of equations (40.3), in which
the time dependence is determined by the small frequency ωmn − ω. Omitting all
other terms, we obtain a system of two equations:

iℏ
dam
dt

= Fmne
i(ωmn−ω)tan = Fmne

iεtan, iℏ
an
dt

= F ∗
mnam.

We make the substitution
ane

iεt = bn

and obtain the equations

iℏȧm = Fmnbn, iℏ(ḃn − iεbn) = F ∗
mnam.

Eliminating am, we have

ḃn − iεḃn + (1/ℏ2)|Fmn|2bn = 0.

We can take as two independent solutions of these equations

an = Aeiαt, am = −A ℏα1

F ∗
mn

eiα2t (1)

and
an = Be−iα2t, am = B

ℏα2

F ∗
mn

e−iα1t, (2)

where A and B are constants (which have to be determined from the normalization
condition), and we have used the notation

α1 = −ε/2 + Ω, α2 = ε/2 + Ω, Ω =
√
ε2/4 + |η|2, η = Fmn/ℏ.
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Thus, under the action of the perturbation, the functions Ψ
(0)
n ,Ψ

(0)
m become

anΨ
(0)
n + amΨ

(0)
m , with an and am given by (1) and (2).

Let the system be in the state Ψ
(0)
m at the initial instant (t = 0). The state

of the system at subsequent instants is given by a linear combination of the two
functions which we have obtained, which becomes (0)

m for t = 0:

Ψ = eiεt/2
(
cosΩt− iε

2Ω
sinΩt

)
Ψ(0)

m − iη∗

Ω
e−iεt/2 sinΩt ·Ψ(0)

n . (40.13)

The squared modulus of the coefficient of Ψ(0)
n is

|η|2

2Ω2
[1− cos(2Ωt)] . (4)

This gives the probability of finding the system in the state Ψ
(0)
n at time t. We

see that it is a periodic function with frequency 2Ω, and varies from 0 to |η|2/Ω2.
For ε = 0(exact resonance) the probability (4) becomes

(1/2) [1− cos(2|η|t)] .

It varies periodically between 0 and 1; in other words, the system makes periodic
transitions from the state Ψ

(0)
m to the state Ψ

(0)
n .

§ 41. Transitions under a perturbation acting for a
finite time

Let us suppose that the perturbation V (t) acts only during some finite
interval of time (or that V (t) diminishes sufficiently rapidly as t→ ±∞). Let
the system be in the nth stationary state (of a discrete spectrum) before the
perturbation begins to act (or in the limit as t → −∞). At any subsequent
instant the state of the system will be determined by the function

Ψ =
∑
k

aknΨ
(0)
k ,

where, in the first approximation,

akn = a
(1)
kn = − i

ℏ

∫ t

−∞
Vkne

iωkntdt, k ̸= n,

ann = 1 + a(1)nn = 1− i

ℏ

∫ t

−∞
Vnndt;

(41.1)

the limits of integration in (40.5) are taken so that, as t → −∞, all the
a
(1)
kn tend to zero. After the perturbation has ceased to act (or in the limit
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t → ∞), the coefficients akn take constant values akn(∞), and the system is
in the state with wave function

Ψ =
∑
k

akn(∞)Ψ
(0)
k ,

which again satisfies the unperturbed wave equation, but is different from the
original function Ψ

(0)
n . According to the general rule, the squared modulus

of the coefficient akn(∞) determines the probability for the system to have
an energy E(0)

k , i.e. to be in the kth stationary state.
Thus, under the action of the perturbation, the system may pass from its

initial stationary state to any other. The probability of a transition from the
initial (ith) to the final (fth) stationary state is5)

wfi =
1

ℏ2

∣∣∣∣∫ +∞

−∞
Vfie

iωfitdt

∣∣∣∣2 . (41.2)

Let us now consider a perturbation which, once having begun, continues
to act for an indefinite time (always, of course, remaining small). In other
words, V (t) tends to zero as t − ∞ and to a finite non-zero limit as t →
+∞. Formula (41.2) cannot be applied directly here, since the integral in it
diverges. This divergence, however, is physically unimportant and can easily
be removed. To do this, we integrate by parts:

afi = − i

ℏ

∫ t

−∞
Vfie

iωfitdt− Vfie
iωfit

ℏωfi

∣∣∣∣t
−∞

+

∫ t

−∞

∂Vfi
∂t

eiωfit

ℏωfi

dt.

The value of the first term vanishes at the lower limit, while at the upper limit
it is formally identical with the expansion coefficients in formula (38.8); the
presence of an additional periodic factor eiωfit is merely due to the fact that
the afi are the expansion coefficients of the complete wave function Ψ, while
the cfi in §38 are the expansion coefficients of the time-independent function
ψ. Hence it is clear that its limit as t → ∞ gives simply the change in the
original wave function (0)

i under the action of the “constant” part V (+∞) of
the perturbation, and consequently has no relation to transitions into other
states. The probability of a transition is given by the squared modulus of
the second term and is

wfi =
1

ℏ2ω2
fi

∣∣∣∣∫ +∞

−∞

∂Vfi
∂t

eiωfitdt

∣∣∣∣2 . (41.3)

5) For uniformity, the initial and final states will henceforward be denoted by i and
f when transition probabilities are discussed. The suffixes of these probabilities will be
written in the order fi, the same as for matrix elements.
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The derivation is also valid when the transition is from a state of the
discrete spectrum to a state of the continuous spectrum. The only difference
is that here we have the probability of the transition from a given (ith) state
to states in a range of values of νf (see the end of §38 from νf to νf + dνf ,
so that, for example, formula (41.2) must be written

dwif =
1

ℏ2

∣∣∣∣∫ +∞

−∞
Vfie

iωfitdt

∣∣∣∣2 dνf . (41.4)

If the perturbation V (t) varies little during time intervals of the order of
the period ∼ 1/ωfi the value of the integral in (41.2) or (41.3) will be very
small. In the limit when the applied perturbation varies arbitrarily slowly,
the probability of any transition with change of energy (i.e. with a non-zero
frequency 1/ωfi) tends to zero. Thus, when the applied perturbation changes
sufficiently slowly (adiabatically), a system in any non-degenerate stationary
state will remain in that state (see also §53).

In the opposite limiting case of a very rapid, “instantaneous” application
of the perturbation, the derivatives ∂Vfi/∂t become infinite at the “instant of
application”. In the integral of ∂Vfi

∂t
eiωfit, we can take outside the integral the

comparatively slowly varying factor eiωfit and use its value at this instant.
The integral is then found at once, and we obtain

wfi =
|Vfi|2

ℏ2ω2
fi

(41.5)

The transition probabilities in instantaneous perturbations can also be found
in cases where the perturbation is not small. Let the system be in a state
described by one of the eigenfunctions ψ(0)

i of the original Hamiltonian Ĥ0.
If the change in the Hamiltonian occurs instantaneously (i.e. in a time short
compared with the periods 1/ωfi of transitions from the given state i to
other states), then the wave function of the system is “unable” to vary and
remains the same as before the perturbation. It will no longer, however,
be an eigenfunction of the new Hamiltonian Ĥ of the system, i.e. the state
ψ

(0)
i will not be a stationary state. The probabilities wfi for transitions of

the system into the new stationary states are determined, according to the
general rules of quantum mechanics, by the coefficients in the expansion of
the function ψ(0)

i in terms of the eigenfunctions ψf of the Hamiltonian Ĥ:

wfi =

∣∣∣∣∫ ψ
(0)
i ψ∗

fdq

∣∣∣∣2 . (41.6)
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We shall show how this general formula becomes (41.5) if the change in
the Hamiltonian V̂ = Ĥ − Ĥ0 is small. We multiply the equations

Ĥ0ψ
(0)
i = E

(0)
i ψ

(0)
i , Ĥ∗ψ∗

f = Efψ
∗
f

by ψ∗
f and ψ(0)

i respectively, integrate with respect to dq and subtract. Using
also the self-conjugacy of the operator Ĥ, we obtain

(Ef − E
(0)
i )

∫
ψ∗
fψ

(0)
i dq =

∫
ψ∗
f V̂ ψ

(0)
i dq.

If the perturbation V̂ is small, in the first approximation we can replace
Ef by the adjoining unperturbed level E(0)

f , and the wave function ψf (on
the right-hand side of the equation) by the corresponding function ψ(0)

f . This
gives ∫

ψ∗
fψ

(0)
i dq =

1

ℏωfi

∫
ψ

(0)∗
f V̂ ψ

(0)
i dq,

and formula (41.6) becomes (41.5).
PROBLEMS
1. A uniform electric field is suddenly applied to a charged oscillator in the

ground state. Determine the probabilities of transitions of the oscillator to excited
states under the action of this perturbation.

SOLUTION. The potential energy of the oscillator in the uniform field (which
exerts a force F on it) is

U(x) =
mω2

2
x2 − Fx

mω2

2
(x− x0)

2 + const,

(where x0 = F/mω2), i.e. has still the pure oscillator form but with the
equilibrium position shifted. Hence the wave functions of the stationary states of
the perturbed oscillator are ψk(x − x0), where ψk(x) are the oscillator functions
(23.12); the initial wave function is ψ0(x) (23.13). Using these functions and the
expression (23.11) for the Hermite polynomials, we find∫ +∞

−∞
ψ
(0)
0 ψkdx =

(−1)k√
2kπk!

e−ξ20/2

∫ +∞

−∞
e−ξξ0 dk

dξk
e−ξ2+2ξξ0dξ,

with the notation ξ0 = x0
√
mω/ℏ. On integrating k times by parts, the integral

on the right becomes

ξk0

∫ +∞

−∞
exp(−ξ2 + ξξ0)dξ = ξk0

√
π exp

ξ20
4
.
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Thus the transition probability (41.6) is

wk0 =
k
k

k!
e−k, k =

ξ20
2

=
F 2

2mℏω3
.

As a function of the number k it represents a Poisson distribution for which the
mean value of k is .

Perturbation theory is applicable when F is small, so that k ≪ 1. Then the
excitation probabilities are small, and decrease rapidly with increasing k. The
largest is w10 ≈ k.

In the opposite case of large F (k ≫ 1), excitation of the oscillator occurs with
very high probability: the probability that the oscillator will remain in the normal
state is w00 = e−k.

2. The nucleus of an atom in the normal state receives an impulse which gives
it a velocity v; the duration τ of the impulse is assumed short in comparison both
with the electron periods and with a/v, where a is the dimension of the atom.
Determine the probability of excitation of the atom under the influence of such a
“jolt” (A. B. Migdal 1939).

SOLUTION. We use a frame of reference K ′ moving with the nucleus after
the impact. By virtue of the condition τ ≪ a/v, the nucleus may be regarded as
practically stationary during the impact, so that the coordinates of the electrons in
K ′ and in the original frame K immediately after the perturbation are the same.
The initial wave function in K ′ is

ψ′
0 = ψ0 exp(−iq

∑
a

ra), q =
mv

ℏ
,

where ψ0 is the wave function of the normal state with the nucleus at rest, and
the summation in the exponent is over all Z electrons in the atom. The required
probability of transition to the kth excited state is now given, according to (41.6),
by

wk0 =

∣∣∣∣∣⟨k| exp(−iq
∑
a

ra)|0⟩

∣∣∣∣∣
2

.

In particular, if qa≪ 1, then by expanding the exponential factor in the integrand
and noting that the integral of ψ∗

kψ0 is zero because the functions ψ0 and ψk are
orthogonal, we obtain

wk0 =

∣∣∣∣∣
〈
k

∣∣∣∣∣q∑
a

ra

∣∣∣∣∣ 0
〉∣∣∣∣∣

2

.

3. Determine the total probability of excitation and ionization of an atom of
hydrogen which receives a sudden “jolt” (see Problem 2).

SOLUTION.
The required probability can be calculated as the difference

1− w00 = 1−
∣∣∣∣∫ ψ2

0e
−iqrdV

∣∣∣∣ ,
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where w00 is the probability that the atom will remain in the ground state (ψ0 =
(πa3)−1/2e−r/a being the wave function of the ground state of the hydrogen atom,
with a the Bohr radius) Calculation of the integral gives

1− w00 = 1− 1

(1 + 1
4q

2a2)4
.

In the limiting case qa ≪ 1 this probability tends to zero as q2a2, while for
qa≫ 1 it tends to unity as 1− (2/qa)8.

4. Determine the probability that an electron will leave the K-shell of an atom
with large atomic number Z when the nucleus undergoes β-decay. The velocity of
the β-particle is assumed large in comparison with that of the K-electron (A. B.
Migdal and E. L. Feinberg 1941).

SOLUTION.6)
In the conditions stated the time taken by the β-particle to pass through the

K-shell is small compared with the period of revolution of the electron, so that the
change in the nuclear charge can be regarded as instantaneous. The perturbation is
here represented by the change V = 1/r in the field of the nucleus when the change
in its charge is small (1 compared with Z). According to (41.5) the transition
probability for one of the two K-shell electrons with energy E0 = −Z2/2 (here
and below we use the fact that the state of the K-electrons is hydrogen-like; see
§74) to a state of the continuous spectrum with energy E = k2/2 in the range
dE = kdk is

dw = 2
4|V0k|2

(k2 + Z2)2
dk

In the range which determines the matrix element V0k, the important part
is that of short distances (∼ 1/Z) from the nucleus, in which the hydrogen-like
expression can again be used for the wave function of a state of the continuous
spectrum. The final state of the electron must have angular momentum l = 0 (the
same as that of the initial state). By means of the functions Rl0, and Rk0 (nor-
malized on the k/2π scale), derived in §36 and formula (f.3) in the Mathematical
Appendices we find7)(

1

r

)
0k

=
4
√
2πk

1− e−2πZ/k

(1 + ik/Z)iZ/k(1− ik/Z)−iZ/k

1 + k2/Z2

and, since
|(1 + iα)i/α|2 = exp

(
−2

arctanα

α

)
,

we obtain finally

dw =
27

Z4(1 + k2/Z2)4
f

(
k

Z

)
kdk,

6) In Problems 4 and 5, atomic units are used.
7) In the calculation it is convenient to use Coulomb units and then return to atomic

units in the final result.
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with
f(α) =

1

1− e−2π/α
exp

(
−4

arctanα

α

)
.

The limiting values of the function f(α) are e−4 for α≪ 1 and α/2π for α≫ 1.
The total probability of ionization of the K-shell is obtained by integration

of dw over all energies of the emergent electron. A numerical evaluation gives
w = 0.65Z−2.

5. Determine the probability of emergence of an electron from the K-shell of
an atom with large Z in α-decay of the nucleus. The velocity of the α-particle is
small compared with that of the K-electron, but the time which it takes to leave
the nucleus is small in comparison with the time of revolution of the electron (A.
B. Migdal 1941, J. S. Levinger 1953).

SOLUTION. After the emergence of the α-particle, the perturbation acting on
the electron is adiabatic The required effect is therefore determined essentially by
the interval of time close to the “instant of application” of the perturbation which
destroys the adiabaticity, when the α-particle, leaving the nucleus and moving
freely, is still at a distance small compared with the radius of the K-orbit. The
perturbation V which causes the ionization of the atom is here represented by the
deviation of the combined field of the nucleus and the α-particle from the purely
Coulomb field Z/r. The dipole moment of two particles with atomic weights 4 and
A − 4, and charges 2 and Z − 2, at a distance vt apart (where v is the relative
velocity of the nucleus and the α-particle), is

2(A− 4)− (Z − 2)4

A
vt =

2(A− 2Z)

A
vt.

Hence the dipole term in the field of the nucleus and the α-particle is8)

V =
2(A− 2Z)

A
vt
z

r3
,

where the z-axis is in the direction of the velocity v. The matrix element of this
perturbation reduces to that of z: taking the matrix element of the equation of
motion of the electron z̈ = −Zz/r3, we obtain( z

r3

)
0k

=
(E − E0)

2

Z
z0k.

The required transition probability for one of the two electrons in the K-shell
is, by (41.2),

dw = 2

∣∣∣∣∫ ∞

0
V0ke

i(E0−E)tdt

∣∣∣∣2 dk =
8(A− 2Z)2v2

A2Z2
|z0k|2

dk

2π

8) If the difference A − 2Z is small, it may be necessary to take account of the next
(quadrupole) term also.
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to calculate the integral, we include in the integrand an additional damping factor
e−λt with λ > 0, and then make λ → 0 in the result. To calculate the matrix
element of z = r cos θ, we note that, since the orbital angular momentum in the
initial state is l = 0, cos θ has a non-zero matrix element only for the transition to
a state with l = 1, and

|(cos θ)01|2 =
1

3
,

and
|z0k|2 =

1

3
|r0k|2.

Calculating r0k by means of the radial functions R00 and Rk1, we find

dw =
211(A− 2Z)2v2

3A2Z6(1 + k2/Z2)5
f

(
k

Z

)
kdk

the function f being as in Problem 4.

§ 42. Transitions under the action of a periodic
perturbation

The results are different for the probability of transitions to the states of
the continuous spectrum under the action of a periodic perturbation. Let us
suppose that, at some initial instant t = 0, the system is in the ith stationary
state of the discrete spectrum. We shall assume that the frequency ω of the
periodic perturbation is such that

ℏω > Emin − E − i(0) (42.1)

where Emin is the value of the energy where the continuous spectrum begins.
It is evident from the results of §40 that the chief part will be played by

states of the continuous spectrum with energies Ef very close to the resonance
energy E

(0)
i + ℏω, i.e. those for which the difference ωfi − ω is small. For

this reason it is sufficient to consider, in the matrix elements (40.8) of the
perturbation, only the first term (with the frequency ωfi − ω close to zero).
Substituting this term in (40.5) and integrating, we obtain

afi = − i

ℏ

∫ t

0

Vfi(t)dt = −Ffi
exp [i(ωfi − ω)t]− 1

ℏ(ωfi − ω)
(42.2)

The lower limit of integration is chosen so that afi = 0 for t = 0, in accordance
with the initial condition imposed.
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Hence we find for the squared modulus of afi

|afi|2 = |Ffi|2
4 sin2 ωfi−ω

2
t

ℏ2(ωfi − ω)2
. (42.3)

It is easy to see that, for large t, this function can be regarded as proportional
to t. To show this, we notice that

lim
t→∞

sin2 αt

πtα2
= δ(α) (42.4)

For when a α ̸= 0 this limit is zero, while for α = 0 we have sin2 αt
tα2 = t, so

that the limit is infinite; finally, integrating over α from −∞ to +∞, we have
(with the substitution αt = ξ)

1

π
=

∫ +∞

−∞

sin2 αt

tα2
dα =

1

π

∫ +∞

−∞

sin2 ξ

ξ2
dξ = 1.

Thus the function on the left-hand side of equation (42.4) in fact satisfies all
the conditions which define the delta function. Accordingly, we can write for
large t

|afi|2 =
1

ℏ2
|Ffi|2πtδ

(
ωfi − ω

2

)
or, substituting ℏωfi = Ef − E

(0)
i and using the fact that δ(ax) = δ(x)/α:

|afi|2 =
2π

ℏ
|Ffi|2δ

(
Ef − E

(0)
i − ℏω

)
t.

The expression |afi|2dνf is the probability of a transition from the original
state to one in the interval dνf . We see that, for large t, it is proportional to
the time interval elapsed since t = 0. The probability dwfi of the transition
per unit time is9)

dwfi =
2π

ℏ
|Ffi|2δ

(
Ef − E

(0)
i − ℏω

)
dνf . (42.5)

As we should expect, it is zero except for transitions to states with energy
Ef = E

(0)
i + ℏω. If the energy levels of the continuous spectrum are not

degenerate, so that νf can be taken as the value of the energy alone, then
9) It is easy to verify that, on taking account of the second term in (40.8), which we

have omitted, additional expressions are obtained which, on being divided by t, tend to
zero as t→ +∞.
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the whole “interval” of states dνf reduces to a single state with energy E =

E
(0)
i + ℏω, and the probability of a transition to this state is

wEi =
2π

ℏ
|FEi|2. (42.6)

There is another method of deriving formula (42.5) that is methodolog-
ically instructive, in which the periodic perturbation is assumed not to be
applied at a time t = 0 but to increase slowly from t = −∞ by an exponen-
tial law eλt with a positive constant λ which is then made to tend to zero
(adiabatic switch-on). The initial condition afi = 0 is accordingly applied at
t = −∞. The matrix element of the perturbation now has the form

Vfi = Ffie
i(ωfi−ω)t+λt,

and (42.2) becomes

afi = − i

ℏ

∫ t

−∞
Vfi(t)dt− Ffi

exp [i(ωfi − ω)t+ λt]

ℏ(ωfi − ω − iλ)
. (42.7)

Hence
|afi|2 =

1

ℏ2
|Ffi|2

e2λt

(ωfi − ω)2 + λ2
.

The transition probability per unit time is given by the derivative

d

dt
|afi|2 = 2λ|afi|2.

There is a formula
lim
λ→0

λ

π(α2 + λ2)
= δ(α), (42.8)

valid in the same sense as (42.4); with this we find, taking the limit λ→ 0:

d

dt
|afi|2 →

2π

ℏ2
|Ffi|2δ(ωfi − ω),

and thus return to (42.5).

§ 43. Transitions in the continuous spectrum

One of the most important applications of perturbation theory is to cal-
culate the probability of a transition in the continuous spectrum under the
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action of a constant (time-independent) perturbation. We have already men-
tioned that the states of the continuous spectrum are almost always degen-
erate. Having chosen in some manner the set of unperturbed wave functions
corresponding to some given energy level, we can put the problem as fol-
lows. It is known that, at the initial instant, the system is in one of these
states; it is required to determine the probability of the transition to another
state with the same energy. For transitions from the initial state i to states
between νf and νf + dνf we have at once from (42.5) (putting ω = 0 and
changing the notation)

dwfi =
2π

ℏ
|Vfi|2δ (Ef − Ei) dνf . (43.1)

This expression is, as we should expect, zero except for Ef = Ei: under
the action of a constant perturbation, transitions occur only between states
with the same energy. It must be noticed that, for transitions from states
of the continuous spectrum, the quantity dwfi cannot be regarded directly
as the transition probability; it is not even of the right dimensions (1/time).
Formula (43.1) represents the number of transitions per unit time, and its
dimensions depend on the chosen method of normalization of the wave func-
tions of the continuous spectrum.10)

Let us calculate the perturbed wave function, which before the action
of the perturbation is the same as the original unperturbed function ψ

(0)
i .

Using the method given at the end of §42, we can regard the perturbation
as being adiabatically applied according to eλt with λ → 0. From (42.7),
putting ω = 0 and changing the notation, we have

a1fi = Vfi
exp

{
i
ℏ(Ef − Ei)t+ λt

}
Ei − Ef + iλ

. (43.2)

The perturbed wave function is

Ψi = Ψ
(0)
i +

∫
a
(1)
fi Ψ

(0)
f dνf ,

where the integration is extended over the whole of the continuous spec-
trum.11) Substitution of (43.2) gives

Ψi =

[
ψ

(0)
i +

∫
Vfiψ

(0)
f

dνf
Ei − Ef + i0

]
exp

(
− i

ℏ
Eit

)
. (43.3)

10) The phenomena comprised within the theory here discussed include, for example,
various types of collision; the system in its initial and final states is a set of free particles
and the perturbation is the interaction between them. With appropriate normalization of
the wave functions, (43.1) may then be the collision cross-section (see §126).

11) If there is also a discrete spectrum, then we must add to the integral in this formula
(and subsequent ones) the appropriate sum over the states of the discrete spectrum.
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In the limit as λ→ 0, the factor eλt becomes unity. The term +i0, denoting
the limit of iλ as λ tends to zero from positive values, determines the manner
of integration with respect to the variable Ef (dEf occurs as a factor in dνf
together with the differentials of other quantities which describe the states
of the continuous spectrum). Without the term iλ, the integrand in (43.3)
would have a pole at Ef = Ei, near which the integral would diverge. The
term iλ moves this pole into the upper half-plane of the complex variable Ef .
After the limit λ→ 0 is taken, the pole returns to the real axis, but we know
that the path of integration must pass beneath it:

Ei

Ef

(43.4)

The time factor in (43.3) shows that this function belongs, as it should,
to the same energy Ei as the original unperturbed function. In other words,
the function

ψi = ψ
(0)
i +

∫
Vfi

Ei − Ef + i0
ψ

(0)
f dνf (43.5)

satisfies Schrödinger’s equation

(Ĥ0 + V̂ )ψi = Eiψi

It is therefore natural that the expression obtained should correspond exactly
to (38.8).12)

The calculations given above correspond to the first approximation of
perturbation theory. It is not difficult to calculate the second approximation
as well. To do this, we must derive the formula for the next approximation
to Ψi; this is easily effected by using the method of §38 (now that we know
the method of dealing with the “divergent” integrals). A simple calculation
gives the formula

Ψi =

{
ψ

(0)
i +

∫ [
Vfi +

∫
VfνVνi

Ei − Ef + i0
dν

]
ψ

(0)
f dνf

Ei − Ef + i0

}
exp

(
− i

ℏ
Eit

)
.

Comparing this expression with formula (43.3), we can write down the
corresponding formula for the probability (or, more precisely, the number)
of transitions, by direct analogy with (43.1):

dwfi =
2π

ℏ

∣∣∣∣Vfi + ∫ VfνVνi
Ei − Eν + i0

∣∣∣∣2 δ(Ei − Ef )dνf . (43.6)

12) With this formula, the way in which the integral is to be taken can be found from
the condition that the asymptotic expression for ψi at large distances should contain only
an outgoing (and not an ingoing) wave (see §136).
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It may happen that the matrix element Vfi for the transition consid-
ered vanishes. The effect is then zero in the first approximation, and (43.6)
becomes

dwfi =
2π

ℏ

∣∣∣∣∫ VfνVνi
Ei − Eν

dν

∣∣∣∣2 δ(Ef − Ei)dνf , (43.7)

In applications of this formula, the point Eν = Ei is not usually a pole of the
integrand; the manner of integrating with respect to Eν is then unimportant,
and the integral can be taken along the real axis.

The states ν for which Vfν and Vνi are not zero are usually called inter-
mediate states for the transition i → f . Intuitively, we may say that this
transition takes place as if in two steps i → ν and ν → f (but such a de-
scription must not be taken literally, of course). It may happen that the
transition i → f can take place not through one but only through several
successive intermediate states. Formula (43.7) can be at once generalized to
such cases. For example, if two intermediate states are needed, we have

dwfi =
2π

ℏ

∣∣∣∣∫ Vfν′Vν′νVνi
(Ei − Eν′)(Ei − Eν)

dνdν ′
∣∣∣∣2 δ(Ef − Ei)dνf . (43.8)

Lastly, to clarify the mathematical significance of the integrals taken
along a path of the form (43.4), we shall prove the formula∫

f(x)dx

x− a− i0
= P

∫
f(x)dx

x− a
+ iπf(a), (43.9)

where the integration is along a segment of the real axis including the point
x = a. If we pass round the pole x = a along a semicircle of radius ρ, we
find that the whole integral is equal to the sum of the integrals along the
real axis from the lower limit to a − ρ and from a + ρ to the upper limit,
together with iπ times the residue of the integrand at the pole. In the limit
ρ→ 0, the integrals along the real axis make the integral along the complete
segment, taken as a principal value (denoted by P ), and the result is (43.9),
which may also be symbolically written

1

x− a− i0
= P

1

x− a
+ iπδ(x− a); (43.10)

P here denotes the taking of the principal value when integrating the function
f(x)/(x− a).

§ 44. The uncertainty relation for energy

Let us consider a system composed of two weakly interacting parts. We
suppose that it is known that at some instant these parts have definite values
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of the energy, which we denote by E and ε respectively. Let the energy be
measured again after some time interval ∆t; the values E ′, ε′ obtained are in
general different from E, ε. It is easy to determine the order of magnitude
of the most probable value of the difference E ′ + ε′ − E − ε which is found
as a result of the measurement.

According to formula (42.3) with ω = 0, the probability of a transition
of the system (after time t), under the action of a time-independent pertur-
bation, from a state with energy E to one with energy E ′ is proportional
to (

sin2 E
′ − E

2ℏ
t

)
/(E ′ − E)2.

Hence we see that the most probable value of the difference E ′ −E is of the
order of ℏ/t.

Applying this result to the case we are considering (the perturbation being
the interaction between the parts of the system), we obtain the relation

|Eε − E ′ − ε′|∆t ∼ ℏ. (44.1)

Thus the smaller the time interval ∆t, the greater the energy change that
is observed. It is important to notice that its order of magnitude ℏ/∆t is
independent of the amount of the perturbation. The energy change deter-
mined by the relation (44.1) will be observed, however weak the interaction
between the two parts of the system. This result is peculiar to quantum
theory and has a deep physical significance. It shows that, in quantum me-
chanics, the law of conservation of energy can be verified by means of two
measurements only to an accuracy of the order of ℏ/∆t, where ∆t is the time
interval between the measurements.

The relation (44.1) is often called the uncertainty relation for energy.
However, it must be emphasized that its significance is entirely different
from that of the uncertainty relation ∆p∆x ∼ ℏ for the coordinate and
momentum. In the latter, ∆p and ∆x are the uncertainties in the values
of the momentum and coordinate at the same instant; they show that these
two quantities can never have entirely definite values simultaneously. The
energies E, ε, on the other hand, can be measured to any degree of accuracy
at any instant. The quantity (E + ε) − (E ′ + ε′) in (44.1) is the difference
between two exactly measured values of the energy E + ε at two different
instants, and not the uncertainty in the value of the energy at a given instant.

If we regard E as the energy of some system and ε as that of a “measuring
apparatus”, we can say that the energy of interaction between them can be
taken into account only to within ℏ/∆t. Let us denote by ∆E,∆ε, . . . the
errors in the measurements of the corresponding quantities. In the favourable
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case when ε, ε′ are known exactly (∆ε = ∆ε′ = 0), we have

∆(E − E ′) ∼ ℏ
∆t
. (44.2)

From this relation we can derive important consequences concerning the
measurement of momentum. The process of measuring the momentum of a
particle (for definiteness, we shall speak of an electron) consists in a collision
of the electron with some other (“measuring”) particle, whose momenta be-
fore and after the collision can be regarded as known exactly.13) If we apply
to this collision the law of conservation of momentum, we obtain three equa-
tions (the three components of a single vector equation) in six unknowns (the
components of the momentum of the electron before and after the collision).
The number of equations can be increased by bringing about a series of fur-
ther collisions between the electron and “measuring” particles, and applying
to each collision the law of conservation of momentum. This, however, in-
creases the number of unknowns also (the momenta of the electron between
collisions), and it is easy to see that, whatever the number of collisions, the
number of unknowns will always be three more than the number of equations.
Hence, in order to measure the momentum of the electron, it is necessary to
bring in the law of conservation of energy at each collision, as well as that of
momentum. The former, however, can be applied, as we have seen, only to
an accuracy of the order of ℏ/∆t, where ∆t is the time between the beginning
and end of the process in question.

To simplify the subsequent discussion, it is convenient to consider an
imaginary idealized experiment in which the “measuring particle” is a per-
fectly reflecting plane mirror; only one momentum component is then of
importance, namely that perpendicular to the plane of the mirror. To deter-
mine the momentum P of the particle, the laws of conservation of momentum
and energy give the equations

p′ + P ′ − p− P ′ = 0, (44.3)

|ε′ + E ′ − ε− E| ∼ ℏ
∆t

(44.4)

where P,E are the momentum and energy of the particle, and p, ε those of
the mirror; the unprimed and primed quantities refer to the instants before
and after the collision respectively. The quantities p, p′, ε, ε′ relating to the
“measuring particle” can be regarded as known exactly, i.e. the errors in

13) In the present analysis it is of no importance how the energy of the “measuring”
particle is ascertained.
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them are zero. Then we have for the errors in the remaining quantities, from
the above equations:

∆P = ∆P ′, |∆E ′ −∆E| ∼ ℏ
∆t
.

But
∆E = (∂E/∂P )∆P = v∆P,

where v is the velocity of the electron (before the collision), and similarly

∆E ′ = v′∆P ′ = v′∆P.

Hence we obtain
|(v′x − vx)δPx| ∼

ℏ
δt
. (44.5)

We have here added the suffix x to the velocity and momentum, in order to
emphasize that this relation holds for each of their components separately.

This is the required relation. It shows that the measurement of the mo-
mentum of the electron (with a given degree of accuracy ∆P ) necessarily
involves a change in its velocity (i.e. in the momentum itself). This change
becomes greater as the duration of the measuring process becomes shorter.
The change in velocity can be made arbitrarily small only as ∆t → ∞, but
measurements of momentum occupying a long time can be significant only for
a free particle. The non-repeatability of a measurement of momentum after
short intervals of time, and the “two-faced” nature of measurement in quan-
tum mechanics—the necessity of a distinction between the measured value
of a quantity and the value resulting from the process of measurement—are
here exhibited with particular clarity.14)

The conclusion reached at the beginning of this section, which was based
on perturbation theory, can also be derived from another standpoint by con-
sidering the decay of a system under the action of some perturbation. Let
E0 be some energy level of the system, calculated without any allowance for
the possibility of its decay. We denote by τ the lifetime of this state of the
system, i.e. the reciprocal of the probability of decay per unit time. Then
we find by the same method that

|E0 − E − ε| ∼ ℏ/τ (44.6)

where E, ε are the energies of the two parts into which the system decays.
The sum E + ε, however, gives us an estimate of the energy of the system

14) The relation (44.5) and the elucidation of the physical significance of the uncertainty
relation for energy are due to N. Bohr (1928).
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before it decays. Hence the above relation shows that the energy of a system,
in some “quasi-stationary” state, which is free to decay can be determined
only to within a quantity of the order of ℏ/τ . This quantity is usually called
the width Γ of the level. Thus

Γ ∼ ℏ/τ (44.7)

§ 45. Potential energy as a perturbation

The case where the total potential energy of the particle in an external
field can be regarded as a perturbation merits special consideration. The
unperturbed Schrödinger’s equation is then the equation of free motion of
the particle:

∆ψ(0) + k2ψ(0) = 0, k =

√
2mE

ℏ
=
p

ℏ
(45.1)

and has solutions which represent plane waves. The energy spectrum of
free motion is continuous, so that we are concerned with an unusual case of
perturbation theory in a continuous spectrum. The solution of the problem is
here more conveniently obtained directly, without having recourse to general
formulae.

The equation for the correction ψ(1) to the wave function in the first
approximation is

∆ψ(1) + k2ψ(1) =
2mU

ℏ2
ψ(0) (45.2)

where U is the potential energy. The solution of this equation, as we know
from electrodynamics, can be written in the form of retarded potentials, i.e.
in the form15)

ψ(1) = − m

2πℏ2

∫
ψ(0)U(x′, y′, z′)eikr

dV ′

r
, (45.3)

where

dV ′ = dx′dy′dz′, r2 = (x− x′)2 + (y − y′)2 + (z − z′)2.

Let us find what conditions must be satisfied by the field U in order
that it may be regarded as a perturbation. The condition of applicability
of perturbation theory is contained in the requirement that ψ(1) ≪ ψ(0).
Let a be the order of magnitude of the dimensions of the region of space

15) This is a particular integral of equation (45.2), to which we may add any solution of
the same equation with zero on the right-hand side, i.e. the unperturbed equation (45.1).
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in which the field is noticeably different from zero. We shall first suppose
that the energy of the particle is so small that ka is at most of the order of
unity. Then the factor eikr in the integrand of (45.3) is unimportant in an
order-of-magnitude estimate, and the integral is of the order of ψ(0)|U |a2, so
that

ψ(1) ∼ (ma2|U |ℏ2)ψ(0)

and we have the condition

|U | ≪ ℏ2

ma2
(for ka ≲ 1). (45.4)

We notice that the expression on the right has a simple physical meaning;
it is the order of magnitude of the kinetic energy which the particle would
have if enclosed in a volume of linear dimensions a (since, by the uncertainty
relation, its momentum would be of the order of ℏ/a).

Let us consider, in particular, a potential well so shallow that the con-
dition (45.4) holds for it. It is easy to see that in such a well there are no
negative energy levels (R. Peierls 1929); this has been shown, for the partic-
ular case of a spherically symmetric well, in §33, Problem, For, when E = 0,
the unperturbed wave function reduces to a constant, which can be arbitrar-
ily taken as unity: ψ(0) = 1. Since ψ(1) ≪ ψ(0), it is clear that the wave
function ψ = 1 + ψ(1) for motion in the well nowhere vanishes; the eigen-
function, being without nodes, belongs to the normal state, so that E = 0
remains the least possible value of the energy of the particle. Thus, if the well
is sufficiently shallow, only an infinite motion of the particle is possible: the
particle cannot be “captured” by the well. Note that this result is peculiar to
quantum theory; in classical mechanics a particle can execute a finite motion
in any potential well.

It must be emphasized that all that has been said refers only to a three-
dimensional well. In a one- or two-dimensional well (i.e. one in which the
field is a function of only one or two coordinates), there are always negative
energy levels (see the Problems at the end of this section). This is related to
the fact that, in the one- and two-dimensional cases, the perturbation theory
under consideration is inapplicable for an energy E which is zero (or very
small).16)

16) In the two-dimensional case ψ(1) is expressed (as is known from the theory of the
two-dimensional wave equation) as an integral similar to (45.3), in which, instead of
eikr

r dx′dy′dz′ we have iπH
(1)
0 (kr)dx′dy′, where H

(1)
0 is the Hankel function and r =√

(x− x)2 + (y − y)2. As k → 0, the Hankel function, and therefore the whole integral,
tend logarithmically to infinity.

Similarly, in the one-dimensional case, we have, in the integrand, 2πi e
ikr

k dx′, where
r = |x− x′|, and as k → 0 ψ(1) tends to infinity as 1/k.
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For large energies, when ka≫ 1, the factor eikr in the integrand plays an
important part, and markedly reduces the value of the integral. The solution
(45.3) in this case can be transformed; the alternative form, however, is more
conveniently derived by returning to equation (45.2). We take as x-axis the
direction of the unperturbed motion; the unperturbed wave function then
has the form ψ(0) = eikx (the constant factor is arbitrarily taken as unity).
Let us seek a solution of the equation

∆ψ(1) + k2ψ(1) =
2m

ℏ2
Ueikx

in the form ψ(1) = eikxf ; in view of the assumed large value of k, it is sufficient
to retain in ∆ψ(1) only those terms in which the factor eikx is differentiated
one or more times. We then obtain for f the equation

2ik
∂f

∂x
=

2mU

ℏ2
,

whence
ψ(1) = eikxf = − im

ℏ2k
eikx

∫
Udx. (45.5)

An estimation of this integral gives |ψ(1)| ∼ m|U |a/ℏ2k, so that the con-
dition of applicability of perturbation theory in this case is

|U | ≪ ℏ2

ma2
ka =

ℏν
a
, ka≫ 1. (45.6)

where v = kℏ/m is the velocity of the particle. It is to be observed that
this condition is weaker than (45.4). Hence, if the field can be regarded as a
perturbation at small energies of the particle, it can always be so regarded
at large energies, whereas the converse is not necessarily true.17)

The applicability of the perturbation theory developed here to a Coulomb
field requires special consideration. In a field where U = α/r, it is impossible
to separate a finite region of space outside which U is considerably less than
inside it. The required condition can be obtained by writing in (45.6) a
variable distance r instead of the parameter a; this leads to the inequality

α

ℏv
≪ 1. (45.7)

17) In the one-dimensional case the condition for perturbation theory to be applicable
is given by the inequality (45.6) for all ka. The derivation of the condition (45.4) given
above for the three-dimensional case is not valid in the one-dimensional case, owing to the
divergence of the resulting function ψ(1) (see the preceding footnote).
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Thus, for large energies of the particle, a Coulomb field can be regarded as
a perturbation.18)

Finally, we shall derive a formula which approximately determines the
wave function of a particle whose energy E everywhere considerably exceeds
the potential energy U (no other conditions being imposed). In the first
approximation, the wave function depends on the coordinates in the same
way as for free motion (whose direction is taken as the x-axis). Accordingly,
let us look for ψ in the form ψ = eikxF , where F is a function of the co-
ordinates which varies slowly in comparison with the factor eikx (but we
cannot in general say that it is close to unity). Substituting in Schrödinger’s
equation, we obtain for F the equation

2ik
∂F

∂x
=

2m

ℏ2
UF, (45.8)

whence
ψ = eikxF = const · eikx exp

(
− i

ℏv

∫
Udx

)
. (45.9)

This is the required expression. It should, however, be borne in mind
that this formula is not valid at large distances. In equation (45.8) a term
∆F has been omitted which contains second derivatives of F . The derivative
∂2F/∂x2, together with the first derivative ∂F/∂x, tends to zero at large
distances, but the derivatives with respect to the transverse coordinates y
and z do not tend to zero, and can be neglected only if x≪ ka2.

PROBLEMS
1. Determine the energy level in a one-dimensional potential well whose depth

is small. It is assumed that the condition (45.4) is satisfied.
SOLUTION. We make the hypothesis, which will be confirmed by the result,

that the energy level |E| ≪ |U |. Then, on the right-hand side of Schrödinger’s
equation

d2ψ

dx2
=

2m

ℏ2
(U(x)− E)ψ

we can neglect E in the region of the well, and regard ψ as a constant, which
without loss of generality can be taken as unity:

d2ψ

dx2
=

2m

ℏ2
U.

We integrate this equation with respect to x between two points ±x1 such that
a ≪ x1 ≪ 1/κ, where a is the width of the well and κ =

√
2m|E|/ℏ. Since the

18) It must be borne in mind that the integral (45.5) with a field U = α/r diverges
(logarithmically) when x/

√
y2 + z2 is large. Hence the wave function in a Coulomb field,

obtained by means of perturbation theory, is inapplicable within a narrow cone about the
x-axis.



158 POTENTIAL ENERGY AS A PERTURBATION § 45

integral of U(x) converges, the integration on the right can be extended to the
whole range from −∞ to +∞:

dψ

dx

∣∣∣∣x1

−x1

=
2m

ℏ2

∫ +∞

−∞
Udx. (1)

At large distances from the well, the wave function is of the form ψ = e±κx.
Substituting this in (1), we find

−2κ =
2m

ℏ2

∫ +∞

−∞
Udx

or

|E| = m

2ℏ2

(∫ +∞

−∞
Udx

)2

.

We see that, in accordance with the hypothesis, the energy of the level is a small
quantity of a higher order (the second) than the depth of the well.

2. Determine the energy level in a two-dimensional potential well U(r) (where
r is the polar coordinate in the plane) of small depth; it is assumed that the integral∫∞
0 rUdr converges.

SOLUTION. Proceeding as in the previous problem, we have in the region of
the well the equation

1

r

d

dr

(
r
dψ

dr

)
=

2m

ℏ2
U.

Integrating this with respect to r from 0 to r1 (where a≪ r1 ≪ 1/κ), we find

dψ

dr

∣∣∣∣
r=r1

=
2m

ℏ2r1

∫ ∞

0
rU(r)dr. (1)

At large distances from the well, the equation of free motion in two dimensions is

1

r

d

dr

(
r
dψ

dr

)
+

2m

ℏ2
Eψ = 0

and has a solution (vanishing at infinity) ψ = const ·H(1)
0 (iκr); for small values of

the argument, the leading term in this function is proportional to logκr. Bearing
this in mind, we equate the logarithmic derivatives of ψ for r ∼ a inside the well
(the right-hand side of (1) and outside it, obtaining

1

a logκa
≈ 2m

ℏ2a

∫ ∞

0
U(r)rdr,

whence

|E| ∼ ℏ2

ma2
exp

[
−ℏ2

m

∣∣∣∣∫ ∞

0
Urdr

∣∣∣∣−1
]
.

We see that the energy of the level is exponentially small compared with the depth
of the well.
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CHAPTER VIII

SPIN

§ 54. Spin

IN BOTH classical and quantum mechanics, the law of conservation of
angular momentum is a consequence of the isotropy of space with respect to
a closed system. This already demonstrates the relation between the angular
momentum and the symmetry properties under rotation. In quantum me-
chanics, however, the relation in question is a particularly far-reaching one,
and essentially constitutes the basic content of the concept of angular mo-
mentum, especially as the classical definition of the angular momentum of a
particle as the product r× p has no direct significance in quantum mechan-
ics, owing to the fact that position and momentum cannot be simultaneously
measured.

We have seen in §28 that, if the values of l and m are specified, the
angular dependence of the wave function of the particle is determined, and
therefore so are all its symmetry properties under rotation. The most general
formulation of these properties involves specifying the transformation of the
wave functions when the coordinate system is rotated.

The wave function ψLM of a system of particles (with specified values of
the angular momentum L and its component M) remains unchanged1) only
in a rotation of the coordinate system about the z-axis. Any rotation that
alters the direction of this axis has the result that the z-component of the
angular momentum does not have a definite value. This means that, in the
new coordinates, the wave function in general becomes a superposition (a
linear combination) of 2L + 1 functions corresponding to the different pos-
sible values of M for the given L. We can say that the 2L + 1 functions
ψLM are transformed into linear combinations of one another when the co-
ordinate system is rotated.2) The law governing this transformation (i.e.

1) Apart from an unimportant phase factor.
2) In mathematical terms, these functions are the irreducible representations of the

rotation group. The number of functions which are transformed into linear combinations
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the coefficients in the superposition as functions of the angles of rotation
of the coordinate axes) is entirely determined by specifying the value of L.
Thus the angular momentum acquires the significance of a quantum number
which classifies the states of the system according to their transformation
properties under rotation of the coordinate system. This aspect of the con-
cept of angular momentum in quantum mechanics is particularly important
because it is not directly related to the explicit angular dependence of the
wave functions; the law of mutual transformation of these functions can be
stated without reference to that dependence.

Let us consider a composite particle, such as an atomic nucleus, which is
at rest as a whole and is in a definite internal state. In addition to an internal
energy, it has also an angular momentum of definite magnitude L, due to the
motion of the particles within the nucleus. This angular momentum can have
2L+ 1 different orientations in space. Thus, in considering the movement of
a complex particle as a whole, we must assign to it, as well as its coordinates,
another discrete variable: the projection of its internal angular momentum
on some chosen direction in space.

However, with the preceding understanding of the concept of angular
momentum, the origin of it becomes unimportant, and we naturally arrive
at the concept of an “intrinsic” angular momentum which must be ascribed
to the particle regardless of whether it is “composite” or “elementary”.

Thus, in quantum mechanics an elementary particle must be assigned a
certain “intrinsic” angular momentum unconnected with its motion in space.
This property of elementary particles is peculiar to quantum theory (it dis-
appears in the limit ℏ → 0), and therefore has in principle no classical inter-
pretation.3)

The intrinsic angular momentum of a particle is called its spin, as distinct
from the angular momentum due to the motion of the particle in space, called
the orbital angular momentum.4) The particle concerned may be either
elementary, or composite but behaving in some respect as an elementary
particle (e.g. an atomic nucleus). The spin of a particle (measured, like the
orbital angular momentum, in units of ℏ) will be denoted by s.

For particles having spin, the description of the state by means of the wave
function must determine the probability not only of its different positions in

of one another is called the dimension of the representation; it is assumed that this number
cannot be made smaller by taking any other linear combinations of these functions.

3) In particular, it would be wholly meaningless to imagine the “intrinsic” angular mo-
mentum of an elementary particle as being the result of its rotation “about its own axis”.

4) The physical idea that an electron has an intrinsic angular momentum was put for-
ward by G. Uhlenbeck and S. Goudsmit in 1925. Spin was introduced into quantum
mechanics in 1927 by W. Pauli.
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space but also of the possible orientations of the spin. Thus the wave function
must depend not only on three continuous variables, the coordinates of the
particle, but also on a discrete spin variable, which gives the value of the
projection of the spin on a selected direction in space (the z-axis) and takes
a limited number of discrete values, which we shall denote by σ.

Let ψ(x, y, z; σ) be such a wave function. It is essentially a set of several
different functions of the coordinates, corresponding to different values of σ;
these functions will be called the spin components of the wave function. The
integral ∫

|ψ(x, y, z; σ)|2dV

determines the probability that the particle has a certain value of σ. The
probability that the particle is in the volume element dV with any value of
σ is

dV
∑
σ

|ψ(x, y, z; σ)|2.

The quantum-mechanical spin operator, on being applied to the wave
function, acts on the spin variable σ. In other words, it in some way lin-
early transforms the components of the wave function into one another. The
form of this operator will be established later. However, it is easy to see
from very general considerations that the operators ŝx, ŝy, ŝz satisfy the same
commutation conditions as the operators of the orbital angular momentum.

The angular momentum operator is essentially the same as that of an
infinitely small rotation. In deriving, in §26, the expression for the orbital
angular momentum operator, we considered the result of applying the rota-
tion operator to a function of the coordinates. In the case of the spin, this
derivation becomes invalid, since the spin operator acts on the spin variable,
and not on the coordinates. Hence, to obtain the required commutation re-
lations, we must consider the operation of an infinitely small rotation in a
general form, as a rotation of the system of coordinates. If we successively
perform infinitely small rotations about the x-axis and the y-axis, and then
about the same axes in the reverse order, it is easy to see by direct calculation
that the difference between the results of these two operations is equivalent
to an infinitely small rotation about the z-axis (through an angle equal to
the product of the angles of rotation about the x and y-axes). We shall not
pause here to carry out these simple calculations, as a result of which we
again obtain the usual commutation relations between the operators of the
components of angular momentum; these must therefore hold for the spin
operators also:

{ŝy, ŝz} = iŝx, {ŝz, ŝz} = iŝy, {ŝx, ŝy} = iŝz (54.1)
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together with all the physical consequences resulting from them.
The commutation relations (54.1) enable us to determine the possible

values of the absolute magnitude and components of the spin. All the results
derived in §27 (formulae (27.7)–(27.9)) were based only on the commutation
relations, and hence are fully applicable here also; we need only replace L
in these formulae by s. It follows from formula (27.7) that the eigenvalues
of the component of the spin form a sequence of numbers differing by unity.
However, we cannot now assert that these values must be integral, as we
could for the component Lz of the orbital angular momentum (the deriva-
tion given at the beginning of §27 is invalid here, since it was based on the
expression (26.14) for the operator l̂z, which holds only for the orbital angular
momentum).

Moreover, we find that the sequence of eigenvalues sz is limited above
and below by values equal in absolute magnitude and opposite in sign, which
we denote by ±s. The difference 2s between the greatest and least val-
ues of sz must be an integer or zero. Consequently s can take the values
0, 1/2, 1, 3/2, . . .

Thus the eigenvalues of the square of the spin are

s2 = s(s+ 1) (54.2)

where s can be either an integer (including zero) or half an integer. For given
s, the component sz of the spin can take the values s, s−1, . . . ,−s, i.e. 2s+1
values in all. Accordingly, the wave function of a particle with spin s has
2s+ 1 components.5)

Experiment shows that the majority of the elementary particles (elec-
trons, positrons, protons, neutrons, µ-mesons and all hyperons (Λ,Σ,Ξ))
have a spin of 1/2. There are also elementary particles, the π-mesons and
the K-mesons, whose spin is zero.

The total angular momentum of a particle is composed of its orbital
angular momentum l and its spin s. Their operators act on functions of
different variables, and therefore, of course, commute. The eigenvalues of
the total angular momentum

j = l + s (54.3)

are determined by the same “vector model” rule as the sum of the orbital
angular momenta of two different particles (§31). That is, for given values of l

5) Since s is fixed for each kind of particle, the spin angular momentum ℏs becomes
zero in the limit of classical mechanics (ℏ → 0). This consideration does not apply to
the orbital angular momentum, since l can take any value. The transition to classical
mechanics is represented by ℏ tending to zero and l simultaneously tending to infinity, in
such a way that the product ℏl remains finite.
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and s, the total angular momentum can take the values l+s, l+s−1, . . . , |ls|.
Thus, for an electron (spin 1/2) with non-zero orbital angular momentum l,
the total angular momentum can be j = l ± 1/2; for l = 0 the angular
momentum j has, of course, only the one value j = 1/2.

The operator of the total angular momentum J of a system of particles
is equal to the sum of the operators of the angular momentum j of each
particle, so that its values are again determined by the vector model rules.
The angular momentum J can be put in the form

J = L+ S, L =
∑
a

la, S =
∑
a

sa, (54.4)

where S may be called the total spin and L the total orbital angular mo-
mentum of the system. We notice that, if the total spin of the system is
half-integral (or integral), the same is true of the total angular momentum,
since the orbital angular momentum is always integral. In particular, if the
system consists of an even number of similar particles, its total spin is always
integral, and therefore so is the total angular momentum.

The operators of the total angular momentum j of a particle (or J , of a
system of particles) satisfy the same commutation rules as the operators of
the orbital angular momentum or the spin, since these rules are general com-
mutation rules holding for any angular momentum. The formulae (27.13)
for the matrix elements of angular momentum, which follow from the com-
mutation rules, are also valid for any angular momentum, provided that the
matrix elements are defined with respect to the eigenstates of this angular
momentum. Formulae (29.7)—(29.10) for the matrix elements of arbitrary
vector quantities also remain valid (with appropriate change of notation).

PROBLEMS
A particle with spin 1/2 is in a state with a definite value sz = 1/2. Determine

the probabilities of the possible values of the component of the spin along an axis
z′ at an angle θ to the z-axis.

SOLUTION. The mean spin vector s is evidently along the z-axis and has mag-
nitude 1/2. Taking the component along the z′-axis, we find that the mean value
of the spin in that direction is sz′ = (1/2) cos θ. We also have sz′ = (1/2)(w++w−)
where w± are the probabilities of the values sz′ = ±1/2. Since w+ + w− = 1, we
find

w+ = cos 2θ, w− = sin 2θ.

§ 55. The spin operator

In the rest of this chapter we shall not be interested in the dependence
of the wave functions on the coordinates. For example, in speaking of the
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behaviour of the functions ψ(x, y, z; σ) when the system of coordinates is
rotated, we can suppose that the particle is at the origin, so that its coor-
dinates remain unchanged by such a rotation, and the results obtained will
characterize the behaviour of the function ψ with regard to the spin variable
σ.

The variable σ differs from the ordinary variables (the coordinates) by
being discrete. The most general form of a linear operator acting on functions
of a discrete variable σ is(

f̂ψ
)
(σ) =

∑
σ′

fσσ′ψ(σ′) (55.1)

where the fσσ′ , are constants. We put ψ in parentheses in order to emphasize
that the spin argument following it is not that of the original function ψ but
that of the function resulting from it under the action of the operator f̂ . It
is easy to see that the quantities fσσ′ , are the same as the matrix elements
of the operator, defined by the usual rule (11.5).6)

The integration over the coordinates in (11.5) is here replaced by summa-
tion over the discrete variable, so that the definition of the matrix element
is

fσ2σ1 =
∑
σ

ψ∗
σ2
(σ)
[
f̂ψσ1(σ)

]
(55.2)

Here ψσ1(σ) and ψσ2(σ) are the eigenfunctions of the operator ŝz correspond-
ing to the eigenvalues sz = σ1 and σ2; each such function corresponds to a
state in which the particle has a definite value of sz, i.e. in which only one
component of the wave function is non-zero:7)

ψσ1(σ) = δσσ1 , ψσ2(σ) = δσσ2 . (55.3)

According to (55.1),(
f̂ψ
)
(σ) =

∑
σ′

fσσ′ψσ1(σ
′) =

∑
σ′

fσσ′δσ′σ1 = fσσ′

and on substitution of this and ψσ2(σ) the equation (55.2) is satisfied identi-
cally; this completes the proof.

6) Note that the suffixes in the matrix elements on the right of (55.1) are written in an
order which is, in a sense, the reverse of the usual order in (11.11).

7) More precisely, we should write

ψσ1
(σ) = ψ(x, y, z)δσ1σ;

in (55.3) the coordinate factors are omitted, being unimportant in this connection.
We must once again emphasize the distinction between the specified eigenvalue σ1 or

σ2 of sz and the independent variable σ.



Chap. VIII SPIN 167

Thus the operators acting on functions of σ can be represented in the
form of (2s + 1)-rowed matrices. In particular, we have for the operator of
the spin itself, acting on the wave function, by (55.1),

(ŝψ) (σ) =
∑
σ′

sσσ′ψ(σ′) (55.4)

According to what has been said at the end of §54, the matrices ŝx, ŝy, ŝz are
identical with the matrices L̂x, L̂y, L̂z obtained in §27, where the letters L
and M need only be replaced by s and σ:

(sx)σ,σ−1 = (sx)σ−1,σ =
1

2

√
(s+ σ)(s− σ + 1),

(sy)σ,σ−1 = −(sy)σ−1,σ = − i

2

√
(s+ σ)(s− σ + 1),

(sz)σσ = σ.

(55.5)

This determines the spin operator.
In the important case of a spin of 1/2 (s = 1/2, = ±1/2), these matrices

have two rows, and are of the form

ŝ =
1

2
σ̂ (55.6)

where8)

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (55.7)

These are called Pauli matrices. The matrix ŝz = σ̂z

2
is diagonal, as it

should be, since it is defined in terms of the eigenfunctions of the quantity
sz itself.9)

8) In the tabular matrices (55.7) the rows and columns are numbered by the values of �,
the row number corresponding to the first and the column number to the second suffix of
the matrix element. In the present case, these numbers are +1/2 and −1/2. The action
of the. operator shown by (55.4) multiplies row σ of the matrix by a column matrix
containing the components of the wave function:

ψ =

(
ψ(1/2)
ψ(−1/2)

)
9) There should be no misunderstanding because of the use of the same letter to denote

the spin component and the Pauli matrices, since the latter always have the circumflex.
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The following are some specific properties of the Pauli matrices. Direct
multiplication of the matrices (55.7) gives the equations

σ̂2
x = σ̂2

y = σ̂2
z = 1

σ̂yσ̂z = iσ̂x, σ̂zσ̂x = iσ̂y, σ̂xσ̂y = iσ̂z

(55.8)

Combining these with the general commutation rules (54.1), we find that

σ̂iσ̂k + σ̂kσ̂i = 2δik (55.9)

i.e. the Pauli matrices anticommute with one another. By means of these
equations, we can easily verify the following useful formulae:

σ̂2 = 3, (σ̂ · a)(σ̂ · b) = a · b+ iσ̂ · a× b. (55.10)

where a and b are any vectors.10) According to these relations, any scalar
polynomial formed from the matrices σ̂i can be reduced to terms independent
of σ̂ and terms linear in σ̂; hence it follows that any scalar function of the
operator � reduces to a linear function (see Problem 1). Lastly, the values
of the traces (sums of diagonal elements) of the Pauli matrices and their
products are

trσ̂i = 0, trσ̂iσ̂k = 2δik. (55.11)
Subsequent sections of this chapter give a more detailed account of the

spin properties of wave functions, including their behaviour under any rota-
tion of the coordinate system, but we may note immediately an important
property of these functions, namely their behaviour in respect of rotations
about the z-axis.

Let there be an infinitesimal rotation through an angle δφ about the z-
axis. The operator of such a rotation is expressed in terms of the angular
momentum operator (in this case, the spin operator) as 1 + iδφ · ŝz. As a
result of the rotation, the functions ψ(σ) therefore become ψ(σ) + δψ(σ),
where

δψ(σ) = iδφ · ŝzψ(σ) = iσψ(σ)δφ

Writing this relation in the form dψ/dφ = iσψ(σ) and integrating, we
find that a rotation through a finite angle φ changes the functions ψ(σ) into

ψ(σ)′ = ψ(σ)eiσφ (55.12)

In particular, a rotation through 2π multiplies them by a factor e2πiσ, which
is the same for all σ and is equal to (−1)2s (since 2σ always has the same

10) The terms on the right of (55.8)–(55.10) which are independent of σ̂ must, of course,
be understood as constants multiplying the unit two-by-two matrix.
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parity as 2s). Thus, in a complete rotation of the coordinate system about
the z-axis, the wave functions of particles with integral spin return to their
original values, and those of particles with half-integral spin change sign.

PROBLEMS
1. Reduce an arbitrary function of the scalar a + b · σ̂ linear in the Pauli

matrices to another linear function.
SOLUTION. TO determine the coefficients in the required formula

f(a+ b · σ̂) = A+Bσ̂,

we note that, when the z-axis is taken in the direction of b, the eigenvalues of the
operator a + b · σ̂ are a ± b, and the corresponding eigenvalues of the operator
f(a+ b · σ̂) are f(a± b). Hence we find

A =
1

2
[f(a+ b) + f(ab)],B =

b

2b
[f(a+ b)− f(ab)].

2. Determine the values of the scalar product S1 · S2 of spins (1/2) of two
particles in states in which the total spin of the system, S = s1 + s2, has definite
values (0 or 1).

SOLUTION. From the general formula (31.3), which is valid for the addition
of any two angular momenta, we find

s1 · s2 = 1/4 for S = 1, s1 · s2 = −3/4 for S = 0.

3. Which powers of the operator ŝ of an arbitrary spin ŝ are independent?
SOLUTION. The operator

(ŝz − s)(ŝz − s+ 1) . . . (ŝz + s),

formed from the differences between ŝz and all possible eigenvalues sz, gives zero
when it is applied to any wave function, and is therefore itself zero. Hence it
follows that (ŝz)

2s+1 is expressed in terms of lower powers of the operator ŝz, so
that only its powers from 1 to 2s are independent.

§ 56. Spinors

When the spin is zero, the wave function has only one component, ψ(0).
The effect of the spin operator is to reduce it to zero: ŝψ = 0. The relation
between ŝ and the operator of an infinitesimal rotation implies that the
wave function of a particle with zero spin is invariant under rotation of the
coordinate system, i.e. it is a scalar.
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The wave function of a particle with spin 1/2 has two components,
ψ(1/2) and ψ(−1/2). For convenience in later generalizations, we shall dis-
tinguish these components by the superscripts 1 and 2 respectively. The
two-component quantity

ψ =

(
ψ1

ψ2

)
≡
(

ψ (1/2)
ψ (−1/2)

)
(56.1)

is called a spinor.
In any rotation of the coordinate system, the components of the spinor

undergo a linear transformation:

ψ1′ = aψ1 + bψ2, ψ2′ = cψ1 + dψ2. (56.2)

This may be written

ψλ′
= (Ûψ)λ, Û =

(
a b
c d

)
, (56.3)

where Û is the transformation matrix.11) Its elements are in general complex
functions of the angles of rotation of the coordinate axes. They are connected
by relations which follow directly from the physical conditions imposed on
the spinor as the wave function of a particle.

Let us consider the bilinear form

ψ1φ2 − ψ2φ1, (56.4)

where ψ and φ are two spinors. A simple calculation gives

ψ1′φ2′ − ψ2′φ1′ = (ad− bc)(ψ1φ2 − ψ2φ1),

i.e. (56.4) is transformed into itself when the coordinate system is rotated.
If, however, there is only one function which is transformed into itself, it can
be regarded as corresponding to zero spin, and therefore must be a scalar,
i.e. must remain unchanged when the coordinate system is rotated in any
manner. Hence we have

ad− bc = 1; (56.5)

the determinant of the transformation matrix is unity.12)

11) The notation Ûψ implies that the rows of the matrix Û are multiplied by the column
ψ.

12) Such a transformation of two quantities is called a binary transformation.
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Further relations follow from the requirement that the expression

ψ1ψ1∗ + ψ2ψ2∗, (56.6)

which determines the probability of finding the particle at a given point in
space, should be a scalar. A transformation which leaves unchanged the sum
of the squared moduli of the quantities is a unitary transformation, i.e. we
must have Û † = Û−1 (see §12). With the condition (56.5) the inverse matrix
is

Û−1 =

(
d −b
−c a

)
.

Equating this to the Hermitian conjugate matrix

Û † =

(
a∗ c∗

b∗ d∗

)
,

we find
a = d∗, b = −c∗ (56.7)

By virtue of the relations (56.5) and (56.7), the four complex quantities
a, b, c, d actually contain only three independent real parameters, correspond-
ing to the three angles which define a rotation of a three-dimensional system
of coordinates.

Comparison of the expressions for the scalars (56.4) and (56.6) shows that
ψ1∗ and ψ2∗ must be transformed as ψ2 and −ψ1 respectively. It is easy to
verify that this is in fact so, using (56.5) and (56.7).13)

It is possible to put the algebra of spinors in a form analogous to that
of tensor algebra. This is done by introducing, in addition to contravari-
ant spinor components ψ1, ψ2 (with superscripts), the covariant components
(with subscripts), defined by

ψ1 = ψ2, ψ2 = −ψ1 (56.8)

The invariant combination (56.4) of the two spinors may also be written as
a scalar product

ψλφλ = ψ1φ1 + ψ1φ2 − ψ2φ1; (56.9)
13) This property is closely associated with symmetry under time reversal. The latter

(see §18) involves the replacement of the wave function by its complex conjugate. Under
time reversal, the angular momentum components also change sign. Hence the functions
that are the complex conjugates of the components ψ1 ≡ ψ(1/2) and ψ2 ≡ ψ(−1/2) must
have properties equivalent to those of the components corresponding to spin projections
−1/2 and 1/2 respectively.
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here and below, summation over repeated (dummy) indices is implied, as in
tensor algebra. We may note the following rule which has to be borne in
mind in spinor algebra. We have

ψλφλ = ψ1φ1 + ψ2φ2 = −ψ2φ
2 − ψ1φ

1.

Thus
ψλφλ = −ψλφ

λ (56.10)
Hence it is evident that the scalar product of any spinor with itself is zero:

ψλψλ = 0. (56.11)

According to the foregoing discussion, the quantities ψ1 and ψ2 are trans-
formed as ψ1∗ and ψ2∗, i.e.

ψ′
λ =

(
Û∗ψ

)
λ

(56.12)

The product Û∗ψ may also be written as ψ˜̂U∗, with the transposed matrix˜̂
U∗. Since Û is unitary, we have ˜̂U∗ = Û−1, so that ψ′

λ =
(
ψÛ−1

)
λ

or14)

ψλ =
(
ψ′Û

)
λ

(56.13)

Analogously to the transition from vectors to tensors in ordinary tensor
algebra, we can introduce the idea of spinors of higher rank. Thus, a quantity
ψλµ, having four components which are transformed as the products ψλφµ

of the components of two spinors of rank one, is called a spinor of rank two.
Besides the contra variant components ψλµ we can consider the covariant
components ψλµ and the mixed components ψµ

λ which are transformed as the
products ψλφmu and ψλφ

µ respectively. Spinors of any rank are similarly
defined.

The transition from contravariant to covariant spinor components and
vice versa may be written

ψλ = glambdµψ
µ, ψλ = gµλψmu, (56.14)

where
(gλµ) =

(
gλµ
)
=

(
0 1
−1 0

)
(56.15)

14) The notation ψÛ (with ψ to the left of Û) denotes that the components (ψ1ψ2) as a
row are multiplied by the columns of the matrix Û .
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is the metric spinor in a vector space of two dimensions. Thus we have, for
example,

ψµ
λ = gλνψ

νµ, ψλµ = gλνgµρψ
νρ

so that ψ12 = −ψ 1
1 = −ψ21, ψ11 = ψ 2

1 = ψ22, and so on.
The quantities gλµ themselves form an antisymmetric unit spinor of rank

two. It is easy to see that the values of its components remain unchanged
under transformations of the coordinates, and that

gλνg
µν = δµλ (56.16)

where δ11 = δ22 = 1, δ12 = δ21 = 0.
As in ordinary tensor algebra, there are two fundamental operations in

spinor algebra: multiplication, and contraction with respect to a pair of
indices. The multiplication of two spinors gives a spinor of higher rank; thus,
from two spinors of ranks two and three, ψλµ and ψνρσ, we can form a spinor
of rank five, ψλµψ

νρσ. Contraction with respect to a pair of indices (i.e.
summation of the components over corresponding values of one covariant
and one contravariant index) decreases the rank of a spinor by two. Thus, a
contraction of the spinor ψλµ

νρσ with respect to the indices µ and ν gives the
spinor ψλµ

µρσ of rank three; the contraction of the spinor ψλ
µ gives the scalar

ψλ
λ. Here there is a rule similar to that expressed by formula (56.10): if we

interchange the upper and lower indices with respect to which the contraction
is effected, the sign is changed (i.e. ψλ

λ = −ψλ
λ). Hence, in particular, it

follows that, if a spinor is symmetrical with respect to any two of its indices,
the result of a contraction with respect to these indices is zero. Thus, for a
symmetrical spinor ψλµ of rank two, we have ψλ

λ = 0.
A spinor of rank n symmetrical with respect to all its indices is called a

symmetrical spinor of rank n. From an asymmetrical spinor we can construct
a symmetrical one by the process of symmetrization, i.e. summation of the
components obtained by all possible interchanges of the indices. From what
has been said above, it is impossible to construct (by contraction) a spinor
of lower rank from the components of a symmetrical spinor.

Only a spinor of rank two can be antisymmetrical with respect to all
its indices. For, since each index can take only two values, at least two
out of three or more indices must have the same value, and therefore the
components of the spinor are zero identically. Any antisymmetrical spinor of
rank two is a scalar multiple of the unit spinor gλµ. We may notice here the
following relation:

gλµψν + gµνψλ + gνλψµ = 0 (56.17)

(where ψλ is any spinor), which follows from the above; this rule is simply a
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consequence of the fact that the expression on the left is (as we may easily
verify) an antisymmetrical spinor of rank three.

The spinor which is the product of a spinor ψλµ with itself, on contraction
with respect to one pair of indices, becomes antisymmetrical with respect to
the other pair:

ψλνψµ
ν = −ψλ

νψµν .

Hence, from what was said above, this spinor must be a scalar multiple of
the spinor gλµ. Defining the scalar factor so that contraction with respect to
the second pair of indices gives the correct result, we find

ψλνψnu
ν = −(1/2)ψρσψ

ρσgλµ (56.18)

The components of the spinor ψλµ...
∗ which is the complex conjugate of

ψλµ... are transformed as the components of a contravariant spinor φλµ..., and
conversely. The sum of the squared moduli of the components of any spinor
is consequently invariant.

§ 57. The wave functions of particles with arbitrary
spin

Having developed a formal algebra for spinors of any rank, we can now
turn to our immediate problem, to study the properties of wave functions of
particles with arbitrary spin.

This subject is conveniently approached by considering an assembly of n
particles with spin 1/2. The greatest possible value of the z-component of
the total spin is n/2, which is obtained when sz = 1/2 for every particle (i.e.
all the spins are directed the same way, along the z-axis). In this case we
can evidently say that the total spin S of the system is also n/2.

All the components of the wave function ψ(σ1, σ2, . . . , σn) of the system
of particles are then zero, except for ψ(1/2, 1/2, . . . , 1/2). If we write the
wave function as a product of n spinors ψλψµ . . . , each of which refers to
one of the particles, only the component with λ, µ, · · · = 1 in each spinor
is not zero. Thus only the product ψ1φ1 is not zero. The set of all these
products, however, is a spinor of rank n which is symmetrical with respect
to all its indices. If we transform the coordinate system (so that the spins
are not directed along the z-axis), we obtain a spinor of rank n, general in
form except that it is symmetrical as before.

The spin properties of wave functions, being essentially their properties
with respect to rotations of the coordinate system, are identical for a particle
with spin s and for a system of n = 2s particles each with spin 1/2 directed
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so that the total spin of the system is s. Hence we conclude that the wave
function of a particle with spin s is a symmetrical spinor of rank n = 2s.

It is easy to see that the number of independent components of a sym-
metrical spinor of rank 2s is equal to 2s + 1, as it should be. For all those
components are the same whose indices include 2s ones and 0 twos; so are
all those with 2s1 ones and 1 two, and so on up to 0 ones and 2s twos.

Mathematically, the symmetrical spinors provide a classification of the
possible types of transformation of quantities when the coordinate system is
rotated. If there are 2s+1 different quantities which are transformed linearly
into one another (and which cannot be reduced in number by any choice of
linear combinations of them), then we can assert that their law of transfor-
mation is equivalent to that of the components of a symmetrical spinor of
rank 2s. Any set of any number of functions which are transformed linearly
into one another when the coordinate system is rotated can be reduced (by an
appropriate linear transformation) to one or more symmetrical spinors.15)

Thus an arbitrary spinor ψλµν of rank n can be reduced to symmetrical
spinors of ranks n, n−2, n−4, . . . . In practice, such a reduction can be made
as follows. By symmetrizing the spinor ψλµν with respect to all its indices,
we form a symmetrical spinor of the same rank n. Next, by contracting
the original spinor ψλµν with respect to various pairs of indices, we obtain
spinors of rank n− 2, of the form ψλ

λν..., which, in turn, we symmetrize, so
that symmetrical spinors of rank n − 2 are obtained. By symmetrizing the
spinors obtained by contracting ψλµ... with respect to two pairs of indices, we
obtain symmetrical spinors of rank n− 4, and so on.

We have still to establish the relation between the components of a
symmetrical spinor of rank 2s and the 2s + 1 functions ψ(σ), where σ =
s, s− 1, . . . ,−s. The component

ψ

11 . . . 1︸ ︷︷ ︸
s+σ

s+σ︷ ︸︸ ︷
22 . . . 2

,

in whose indices 1 occurs s + σ times and 2 s − σ times, corresponds to a
value σ of the projection of the spin on the z-axis. For, if we again consider
a system of n = 2s particles with spin 1/2, instead of one particle with spin
s, the product corresponds to the above component

s+σ︷ ︸︸ ︷
ψ1φ1 . . .

s−σ︷︸︸︷
χ2ρ2

15) In other words, the symmetrical spinors form what are called irreducible representa-
tions of the rotation group (see §98).
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this product belongs to a state in which s+σ particles have a projection of the
spin equal to +1/2, and s− a projection of −1/2, so that the total projection
is 1/2(s+σ)−1/2(s−σ) = σ. Finally, the proportionality coefficient between
the above component of the spinor and ψ(σ) is chosen so that the equation

+s∑
σ=−s

|ψ(σ)|2 =
2∑

λ,µ,···=1

|ψλµ...|2 (57.1)

holds; this sum is a scalar, as it should be, since it determines the probability
of finding the particle at a given point in space. In the sum on the right-hand
side, the components with (s+ σ) indices 1 occur

(2s)!

(s+ σ)!(s− σ)!

times. Hence it is clear that the relation between the functions ψ(σ) and the
components of the spinor is given by the formula

ψ(σ) =

√
(2s)!

(s+ σ)!(s− σ)!
ψ

11 . . . 1︸ ︷︷ ︸
s+σ

s−σ︷ ︸︸ ︷
22 . . . 2

(57.2)

The relation (57.2) ensures the fulfilment not only of the condition (57.1),
but also, as we easily see, of the more general condition

ψλµ...φλµ... =
∑
σ

(−1)s−σψ(σ)φ(−σ), (57.3)

where ψλµ... and φλµ... are two different spinors of the same rank, while ψ(σ),
φ(σ) are functions derived from these spinors by formula (57.2); the factor
(−1)s−σ is due to the fact that, when all the indices of the spinor components
are raised, the sign changes as many times as there are twos among the
indices.

Formulae (55.5) determine the result of the action of the spin operator
on the wave functions ψ(σ). It is not difficult to find how these operators act
on a wave function written in the form of a spinor of rank 2s. For a spin 1/2,
the functions ψ(+1/2), ψ(−1/2) are the same as the components ψ1, ψ2 of
the spinor. According to (55.6) and (55.7), the result of the spin operators’
acting on them will be

(ŝxψ)
1 = (1/2)ψ2, (ŝyψ)

1 = −(i/2)ψ2, (ŝzψ)
1 = (1/2)ψ1,

(ŝxψ)
2 = (1/2)ψ1, (ŝyψ)

2 = (i/2)ψ1, (ŝxψ)
2 = −(1/2)ψ2.

(57.4)
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To pass to the general case of arbitrary spin, we again consider a system
of 2s particles with spin 1/2, and write its wave function as a product of 2s
spinors. The spin operator of the system is the sum of the spin operators of
each particle, acting only on the corresponding spinor, the result of this action
being given by formulae (57.4). Next, returning to arbitrary symmetrical
spinors, i.e. to the wave functions of a particle with spin s, we obtain

(ŝxψ)

s+σ︷ ︸︸ ︷
11 . . .

s−σ︷ ︸︸ ︷
22 . . . =

s+ σ

2
ψ

s+σ−1︷ ︸︸ ︷
11 . . .

s−σ+1︷ ︸︸ ︷
22 . . . +

s− σ

2
ψ

s+σ+1︷ ︸︸ ︷
11 . . .

s−σ−1︷ ︸︸ ︷
22 . . .,

(ŝyψ)

s+σ︷ ︸︸ ︷
11 . . .

s−σ︷ ︸︸ ︷
22 . . . = −i

s+ σ

2
ψ

s+σ−1︷ ︸︸ ︷
11 . . .

s−σ+1︷ ︸︸ ︷
22 . . . + i

s− σ

2
ψ

s+σ+1︷ ︸︸ ︷
11 . . .

s−σ−1︷ ︸︸ ︷
22 . . .,

(ŝzψ)

s+σ︷ ︸︸ ︷
11 . . .

s−σ︷ ︸︸ ︷
22 . . . = σψ

s+σ︷ ︸︸ ︷
11 . . .

s−σ︷ ︸︸ ︷
22 . . ..

(57.5)

Hitherto we have spoken of spinors as wave functions of the intrinsic angular
momentum of elementary particles. Formally, however, there is no difference
between the spin of a single particle and the total angular momentum of any
system regarded as a whole, neglecting its internal structure. It is therefore
evident that the transformation properties of spinors apply equally to the
behaviour, with respect to rotations in space, of the wave functions ψjm of any
particle or system of particles with total angular momentum j, independent
of whether orbital or spin angular momentum is concerned. There must
therefore be some definite relation between the laws of transformation for
the eigenfunctions ψjm under rotations of the coordinate system and those
for the components of a symmetrical spinor of rank 2j.

In establishing this relation we must, however, make a clear distinction
between two aspects of the dependence of the wave functions on the com-
ponent m (for a given value of j). The wave function may be regarded as
the probability amplitude for various values of m, or may be considered for
a given value of m.

These two aspects have already been discussed at the beginning of §55,
where we dealt with the eigenfunction δσσ0 of the operator ŝz which corre-
sponds to sz = σ0. The mathematical difference between them is especially
clear for a particle of spin s = 1/2. In this case the spin function is, with
respect to the variable σ, a contravariant spinor of rank 1, i.e. must be writ-
ten in spinor notation as δσσ0

. With respect to σ0 it is therefore a covariant
spinor.

This is evidently a general result: the eigenfunctions ψjm can be put in
correspondence with the components of a covariant symmetrical spinor of
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rank 2j by means of formulae analogous to (57.2):16)

ψjm =

√
(2j)!

(j +m)!(j −m)!
ψ11 . . .︸ ︷︷ ︸

j+m

22 . . .︸ ︷︷ ︸
j−m

. (57.6)

The eigenfunctions of integral angular momentum j are spherical har-
monics Yjm. The case j = 1 is of particular importance. The three spherical
harmonics Y1m are

Y10 = i

√
3

4π
cos θ = i

√
3

4π
nz,

Y1,±1 = ∓i

√
3

8π
sin θ · e±iφ = ∓i

√
3

8π
(nx ± iny)

where n is a unit vector along the radius vector. It is seen that these three
functions are equivalent, as regards their transformation properties, to the
components of a vector a, with the relations

ψ10 = iaz, ψ11 = − i√
2
(ax + iay), ψ1,−1 =

i√
2
(ax − iay). (57.7)

Comparing with (57.6), we see that the components of a symmetrical spinor
of rank two can be brought into correspondence with the components of
thevector by the formulae

ψ12 =
i√
2
az, ψ11 = − i√

2
(ax + iay), ψ22 =

i√
2
(ax − iay), (57.8)

ψ12 = − i√
2
az, ψ11 =

i√
2
(ax − iay), ψ22 = − i√

2
(ax + iay). (57.9)

Conversely

az = i
√
2ψ12, ax =

i√
2
(ψ22 − ψ11), ay =

1√
2
(ψ11 + ψ22). (57.10)

16) This result can also be regarded somewhat differently. If the wave function ψ of a
particle in a state with angular momentum j is expanded in terms of the eignfunctions
ψjm:

ψ =
∑
m

amψjm,

then the coefficients am are the probability amplitudes for various values of m. In this sense
they correspond to the “components” ψ(m) of a spin wave function, and this gives their
law of transformation. On the other hand, the value of ψ at a given point in space cannot
depend on the choice of the coordinate system, i.e. the sum

∑
amψjm must be a scalar.

Comparing with the scalar (57.3), we see that am must transform as (−1)j−mψj,−m.



Chap. VIII SPIN 179

It is easily verified that with these definitions we have

ψλµφ
λµ = ab (57.11)

where a and b are vectors corresponding to the symmetrical spinors ψλµ and
φλµ. It is also not difficult to see that there is a correspondence between the
spinor and the vector17)

ψλ
νφ

µν + ψµ
νφ

λν and
√
2a× b. (57.12)

Formulae (57.10) may be compactly written by means of the Pauli matrices:

a =
i√
2
σλ

µφ
µ
λ φµ

λ = − i√
2
a · σµ

λ (57.13)

the matrix indices of σ̂ are written as superscript and subscript in correspon-
dence with the position of the spinor indices in ψµ

λ . The origin of this formula
is easily understood by considering the particular case where the spinor of
rank two ψµ

λ reduces to a product of a spinor of rank one ψµ and its complex
conjugate ψλ∗. Then the quantity

1

2
ψλ∗σµ

λψ
ν

is the mean value of the spin (for a particle with wave function ψmu) and it
is therefore evidently a vector.

The relations (57.8) or (57.9) are a particular case of a general rule: any
symmetrical spinor of even rank 2j, where j is integral, can be correlated with
a symmetrical tensor of half the rank (j) which gives zero on contraction with
respect to any pair of indices; we call this an irreducible tensor.

This follows from the fact that the numbers of independent components
of the spinor and of the tensor are the same (2j+1), as may easily be seen.18)
The relation between the components of the spinor and of the tensor can be
found by means of formulae (57.8)–(57.10), if we consider a spinor of the
rank concerned as the product of several spinors of rank two, and the tensor
as a product of vectors.

PROBLEMS
1. Rewrite the definition (57.4) of the operator of spin 1/2 in terms of the

spinor components of the vector ŝ.
17) The mixed components of a symmetrical spinor may be written in the form ψλ

µ,
without distinction between ψλ

µ and ψµ
λ.

18) We can say that the 2j+1 components of an irreducible tensor of rank j (an integer),
the 2j + 1 spherical harmonics Yjm, and the 2j + 1 components of a symmetrical spinor
of rank 2j give the same irreducible representation of the rotation group.
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SOLUTION. By means of formulae (57.9), which give the relation between the
vector ŝλµ and the spinor ŝλµ, the definition (57.4) can be written as

ŝλµψν =
i

2
√
2
(ψλgµν + ψµgλν)

2. Derive formulae which determine the effect of the spin operator on a vector
wave function of a particle with spin 1.

SOLUTION. The relation between the components of the vector function ψ
and the components of the spinor ψλµ is given by formulae (57.9), and from (57.5)
we have

ŝzψ+ = −ψ+, ŝzψ− = ψ−, ŝzψz = 0.

(where ψ± = ψx ± iψy) or

ŝzψx = −iψy, ŝzψy = iψx, ŝzψz = 0.

The remaining formulae are derived from these by cyclic permutation of the suffixes
x, y, z. They can be written together as

ŝiψk = −ieiklψl.

The complex vector ψ can be put in the form ψ = eiα(u+ iv), where u and v
are real vectors, which can be taken to be mutually perpendicular if the common
phase α is suitably chosen. The two vectors u and v determine a plane which has
the property that the spin component perpendicular to it can take only the values
±1.

§ 58. The operator of finite rotations

Let us now return to the transformation of spinors, and show how the
coefficients of this transformation can in fact be expressed in terms of the
angles of rotation of the coordinate axes.

By the definition of the angular momentum operator (in this case, the
spin operator), 1+ iδφ ·nŝ is the operator of a rotation through an angle δφ
about a direction specified by the unit vector n; for application to the wave
function of a particle with spin 1/2, i.e. a spinor of rank one, we must take
ŝ = σ̂/2 in this operator. The operator of a rotation through a finite angle
φ about the same direction will be correspondingly given by

Ûn = exp (iφnσ̂/2) (58.1)

cf. (15.13). Like any function of the Pauli matrices (see §55, Problem 1),
this expression reduces to one that is linear in these matrices:

Ûn = cos(φ/2) + inσ̂ · sin(φ/2). (58.2)
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For example, with a rotation about the z-axis,

Ûz(φ) = cos
φ

2
+ iσ̂z sin

φ

2
=

(
exp(iφ/2) 0

0 exp(−iφ/2)

)
(58.3)

This means that the components of the spinor are transformed in such a
rotation according to

ψ1′ = ψ1eiφ/2, ψ2′ = ψ2e−iφ/2.

In particular, in a rotation through an angle 2π the spinor components change
sign; spinors of any odd rank must therefore have the same property (cf. the
end of §55).

Similarly, we can find the matrices of transformations consisting of a
rotation through an angle φ about the x-axis or the y-axis:

Ûx(φ) =

(
cos(φ/2) i sin(φ/2)
i sin(φ/2) cos(φ/2)

)
, Ûy(φ) =

(
cos(φ/2) sin(φ/2)
− sin(φ/2) cos(φ/2)

)
.

(58.4)
We may note the particular case of a rotation through an angle π about the
y-axis, for which

ψ1′ = ψ2, ψ2′ = −ψ1,

i.e.
ψ1′ = ψ1, ψ2′ = ψ2. (58.5)

It is now easy to write down the transformation matrix for any rotation
of the coordinate axes, as a function of the Eulerian angles which specify the
rotation.

A rotation of the axes, defined by the Eulerian angles α, β, γ, is carried out
in three stages: (1) a rotation through the angle α (0 ⩽ α ⩽ 2π) about the
z-axis, (2) a rotation through the angle β (0 ⩽ β ⩽ π) about the new position
of the y-axis (ON in Fig. 9, called the line of nodes), (3) a rotation through
the angle γ (0 ⩽ γ ⩽ 2π) about the resulting final position z′ of the z-axis.19)

19) The systems xyz and x′y′z′ are, as always, right-handed, and a positive angle corre-
sponds to the movement of a corkscrew advanced in the positive direction of the axis of
rotation.

The definition of the Eulerian angles given here (and usual in quantum mechanics)
differs from that in Mechanics, §35, in that the second rotation is about the y-axis and
not the x-axis. The angles α, β, γ are related to the angles φ, θ, ψ used in Mechanics (not
the spherical polar angles φ and θ) by

φ = α+
π

2
, θ = β, ψ = γ − π

2
.
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FIG.20

It is evident that the angles α and β are the
spherical polar angles φ and θ of the new z′-axis
with respect to the xyz axes: α = φ, β = θ.

In accordance with this manner of rotating
the axes, the matrix of the complete transfor-
mation is equal to the product of three matrices
(58.3)and (58.4):

Û(α, β, γ) = Ûz(γ)Ûy(β)Ûz(α)

By direct multiplication of the matrices we fi-
nally obtain

Û(α, β, γ) =

(
cos(β/2)ei(α+γ)/2 sin(β/2)e−i(α−γ)/2

− sin(β/2)ei(α−γ)/2 cos(β/2)e−i(α+γ)/2

)
. (58.6)

Spinors of higher ranks are, by definition, transformed as products of
components of a spinor of rank one. In physical applications, however, we
are interested in the wave functions ψjm rather than the transformation laws
of the spinors themselves.

Let the functions ψjm (m = j, j − 1, . . . ,−j) describe, in a coordinate
system xyz, a state having a definite value of the angular momentum j, and
ψjm the same state for the axes x′y′z′; in the first case m is the value of jz,
and in the second case m′ is the value of jz′ . The two sets of functions are
connected by linear relations, which we write in the form

ψjm =
∑
m′

D
(f)
m′m (α, β, γ)ψjm′ (58.7)

The coefficients D(j)
m′m form a matrix of order 2j + 1 with respect to m′ and

m, called the finite-rotation matrix D̂(j); its elements are functions of the
angles α, β, γ of rotation of the system x′y′z′ relative to xyz.

The finite-rotation matrix can be built up by means of the spinor represen-
tation of the functions ψjm. For j = 1/2, the two functions ψ1/2m(m = ±1/2)
form a covariant spinor of rank 1. According to (56.13), its transformation
from x′y′z′ to xyz is effected by the matrix Û (58.6), so that D̂(1/2) = Û .20)
Its elements may be written

D
1/2
m′m = eim

′γdm′m(β)e
imα

20) Note that the matrix indices in (58.7) are placed in the order that corresponds to
multiplying the columns of the matrix D̂(j) by the functions ψjm′ arranged in a row. In
the symbolic notation, (58.7) would have to be written ψjm = (ψ′

jD̂
(j))m in accordance

with (56.13).
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where

d
1/2
m′m(β) =

m′
m

1/2 −1/2

1/2 cos(β/2) sin(β/2),
−1/2 − sin(β/2) cos(β/2).

(58.8)

For any value of j, the functions ψjm are related to the components of a
symmetrical covariant spinor of rank 2j by (57.6). The transformation matrix
for the components of a spinor of rank 2j is the product of 2j matrices D̂(1/2),
each acting on one of the spinor indices. Carrying out the multiplication and
returning to the functions ψjm, we find their transformation matrix:

D
(j)
m′m(α, β, γ) = eim

′γd
(j)
m′mβe

imα, (58.9)

the functions d(j)m′m(β) being given by21)

d
(j)
m′m(β) =

[
(j +m′)!(j −m′)!

(j +m)!(j −m)!

]1/2(
cos

β

2

)m′+m

×

×
(
sin

β

2

)m′−m

P
(m′−m,m′+m)
j−m′ (cos β), (58.10)

where

P (a,b)
n (cos β) =

(−1)n

2nn!
(1− cos β)−α(1 + cos β)−b×

×
(

d

d cos β

)n [
(1− cos β)a+n(1 + cos β)b+n

]
(58.11)

are called Jacobi polynomials.22) We may note that

P (a,b)
n (− cos β) = (−1)nP (b,a)

n (cos β). (58.12)

The functions d(j)m′m possess a number of symmetry properties which might
be derived from the expressions (58.11) and (58.12), but it is simpler to obtain
them directly from the definition as coefficients in the rotational transforma-
tion.

21) The calculations are described by A. R. Edmonds, Angular Momentum in Quantum
Mechanics, Princeton, 1957. The definition of the functionsd(j)m′m by (58.9) differs from
that used in Edmonds’s book by the interchange of α and γ, this being the more natural
treatment in the approach given here.

22) See §e of the Mathematical Appendices, formula (e.11), for the relation between these
polynomials and the hypergeometric series.



184 THE OPERATOR OF FINITE ROTATIONS § 58

The matrix D̂(j) is unitary, being the matrix of a rotational transforma-
tion. Since the transformation inverse to the rotation (α, β, γ) is the rotation
(−γ,−β,−α), we have for the real matrix d̂(j) the relations

d
(j)
m′m(−β) = d

(j)
m′m(β) (58.13)

The following equations are also valid:

d
(j)
m′m(β) = d

(j)
−m,−m′(β) (58.14)

d
(j)
m′m(π) = (−1)j+mδm′,−m,

d
(j)
m′m(−π) = (−1)j−mδm′,−m, d

(j)
m′m(0) = δm′m.

(58.15)

When j = 1/2 these are evident from (58.8); the generalization to arbitrary
j is evident from the manner of construction of the transformation matrix,
described above.

A rotation through an angle π − β can be carried out as two successive
rotations through ψ and −β:

d
(j)
m′m(π− β) =

∑
m′′

d
(j)
m′m′′(π)d

(j)
m′′m(−β) = (−1)j−m′

d
(j)
−m′m(−β),

or, using (58.13),

d
(j)
m′m(π− β) = (−1)j−m′

d
(j)
m,−m′(−β). (58.16)

The result of two rotations about the same axis is independent of the sequence
in which they occur. We must therefore arrive at the same result by carrying
out the rotations through −β and π in the opposite order. Comparison of
the result with (58.16) gives the relation

d
(j)
m′m(β) = (−1)m

′−md
(j)
−m′,−m(β). (58.17)

From (58.17), (58.14) and (58.13), it follows that

d
(j)
m′m(β) = (−1)m

′−md
(j)
mm′(β) = (−1)m

′−md
(j)
m′m(−β). (58.18)

Using (58.13)–(58.18), we can deduce various symmetry properties of the
complete matrix elements D(j)

m′m. In particular, the complex conjugate func-
tion is given by

D
(j)∗
m′m(α, β, γ) = D

(j)
m′m(−α, β,−γ) = (−1)m

′−mD
(j)
−m′,−m(α, β, γ). (58.19)
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Mathematically, the matrices D̂(j) give the unitary irreducible represen-
tations of the rotation group having dimension 2j+1 (see §98 below). Hence
we have immediately the orthonormality relation∫

D
(j1)∗
m′

1m1
(α, β, γ)D

(j2)

m′
2m2

(α, β, γ)
dω

8π2
=

1

2j1 + 1
δj1j2δm1m2δm′

1m
′
2
, (58.20)

where dω = sin βdαdβdγ.
The orthogonality of the functions with respect to the suffixes m and m′

is ensured by the factor exp{i(mα+m′γ)}; that with respect to the index j
arises from the functions d(j)m′m, for which we have∫ π

0

d
(j1)
m′m(β)d

(j2)
m′m(β)

sin βdβ

2
=

1

2j1 + 1
δj1j2 . (58.21)

Lastly, we shall give for reference the expressions for the functions for
various particular values of the parameters. For j = 1, we have

d
(1)
m′m(β) =

m′
m

1 0 −1

1 1
2
(1 + cos β) 1√

2
sin β 1

2
(1− cos β),

0 − 1√
2
sin β cos β 1√

2
sin β,

−1 1
2
(1− cos β) − 1√

2
sin β 1

2
(1 + cos β).

(58.22)

For integral j = l and m′ = 0, formulae (58.10) and (58.11) give

d
(l)
0m(β) = (−1)md

(l)
m0(β) = (−1)m

√
(l −m)!

(l +m)!
Pm
l (cos β). (58.23)

The derivation of this formula is easily seen from the original definition (58.7).
We shall assign the values of the functions ψjm′ . on the right of (58.7) to the
z-axis, on which (for j = l)

Ylm′(nz′) = il
√

2l + 1

4π
δm′0. (58.24)

The function ψjm on the left is then the spherical harmonic function Ylm(β, α)
of the spherical polar angles φ ≡ α, θ ≡ β giving the direction of the z′-axis.
Substitution of (58.24) in (58.7) leads to

Ylm(β, α) = il
√

2l + 1

4π
D

(l)
0m(α, β, γ), (58.25)

which is equivalent to (58.23).
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Lastly, there is the following expression for the function with the maxi-
mum possible value of m or m′:

d
(j)
jm(β) = (−1)j−md

(j)
mj =

=

[
(2j)!

(j +m)!(j −m)!

]1/2(
cos

β

2

)j+m(
sin

β

2

)j−m

. (58.26)

§ 59. Partial polarization of particles

By a suitable choice of the direction of the z-axis, we can always cause
one component (e.g. ψ2) of a given spinor ψλ, the wave function of a particle
with spin 1/2, to vanish. This is evident from the fact that a direction in
space is determined by two quantities (angles), i.e. the number of disposable
parameters is just equal to the number of quantities (the real and imaginary
parts of the complex ψ2) which it is desired to make zero.

Physically this means that, if a particle with spin 1/2 (for definiteness,
we shall speak of an electron) is in a state described by a spin wave function,
then there is a direction in space in which the component of the particle spin
has the definite value σ = 1/2. We can say that in such a state the electron
is completely polarized.

There are also, however, states of an electron which may be said to be
partially polarized. Such states are not described by wave functions but only
by density matrices, i.e. they are mixed states (with respect to spin) (see
§14).

The spin or polarization density matrix of an electron is a spinor ρλµ of
rank two normalized by the condition

ρλλ = ρ11 + ρ22 = 1 (59.1)

and satisfying the “Hermitian” condition

(ρλµ)
∗ = ρµλ. (59.2)

For a pure (i.e. completely polarized) spin state of the electron the spinor
ρλµ reduces to a product of components of the wave function ψλ:

ρλµ = ψλ(ψµ)∗. (59.3)

The diagonal components of the density matrix determine the probabil-
ities of the values +1/2 and −1/2 of the z-component of the electron spin.
The mean value of this component is therefore

sz =
1

2
(ρ11 − ρ22),
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or, using (59.1),
ρ11 =

1

2
+ sz, ρ22 =

1

2
− sz. (59.4)

In a pure state the mean value of the quantities s± = sx± isy is calculated
as

s+ = ψλ∗ŝ+ψ
λ, s− = ψλ∗ŝ−ψ

λ.

Since, according to (55.6) and (55.7), the operators ŝ± are given by the
matrices

s+ =

(
0 1
0 0

)
, s− =

(
0 0
1 0

)
,

we find that
s+ = ψ1∗ψ2, s−ψ

2∗ψ1.

Accordingly we have in a mixed state

ρ12 = s−, ρ21 = s+. (59.5)

Using the Pauli matrices, formulae (59.4) and (59.5) can be combined as

ρλµ =
1

2
(δλµ + 2σ̂λ

µs). (59.6)

Thus all the components of the polarization density matrix of the electron
are expressed in terms of the mean values of components of its spin vector. In
other words, the real vector s entirely determines the polarization properties
of a particle with spin 1/2. In the limit of complete polarization one of
the components of this vector (with an appropriate choice of the directions
of the axes) is 1/2 and the other two are zero. In the opposite case of an
unpolarized state all three components are zero. In the general case of an
arbitrary partial polarization and any choice of the coordinate system we
have 0 ⩽ ρ ⩽ 1, where

ρ = 2(s2x + s2y + s2z)
1/2

is a quantity which may be called the degree of polarization of the electron.
For a particle of arbitrary spin s, the density matrix is a spinor ρλµ...ρσ...

of rank 4s, symmetrical in the first 2s and the last 2s indices and satisfying
the conditions

ρλµ...λµ... = 1, (59.7)(
ρλµ...ρσ...

)∗
= ρρσ...λµ.... (59.8)

To calculate the number of independent components of the density matrix,
we note that, among the possible sets of values of the indices λ, µ, . . . (or
ρ, σ, . . . ) there are only 2s + 1 which are essentially different. Using also
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the fact that the components of the spinor ρλµ...ρσ... are related by (59.7), we
find that the number of different components is (2s + 1)2 − 1 = 4s(s + 1).
Although these components are complex, the relation (59.8) shows that this
does not increase the total number of independent quantities describing the
state of partial polarization of the particle, which is therefore 4s(s + 1).23)
For comparison, it may be remarked that the state of complete polarization
of the particle is described by only 4s quantities (the 2s + 1 complex com-
ponents of the wave function ψλµ..., related by one normalization condition
and containing one common phase which is unimportant in the description
of the state).

Like any spinor of rank 4s, the spinor ρλµ...ρσ... is equivalent to a set of
irreducible tensors of ranks 4s, 4s − 2, . . . , 0. In the present case there is
only one tensor of each rank, since, on account of the symmetry properties
of the spinor ρλµ...ρσ..., each contraction of it can be carried out in only one
way: with respect to any one of the indices λ, µ, . . . , and one of ρ, σ, . . . . In
addition, the scalar (tensor of rank 0) does not appear, reducing to unity by
virtue of the condition (59.7).

§ 60. Time reversal and Kramers’ theorem

The symmetry of motion with respect to a change in the sign of the time
is expressed in quantum mechanics by the fact that, if ψ is the wave function
of a stationary state of the system, the “time-reversed” wave function (which
we denote by ψrev) describes a possible state with the same energy. At the
end of §18 it has been pointed out that ψrev is the same as the complex
conjugate function ψ∗. In this simple form the statement applies to wave
functions where the spin of particles is neglected. When spin is present, a
refinement is necessary.

Let us take the wave function of a particle of spin s in the form of the
contravariant spinor ψλµ... (of rank 2s). On taking the complex conjugate
function ψλµ···∗ we obtain a set of quantities which are transformed as com-
ponents of a covariant spinor. Hence the operation of time reversal corre-
sponds to a change from the wave function ψλµ... to a new wave function
whose covariant components are given by

ψrev
λµ... = ψλµ···∗. (60.1)

For a given set of values of the indices λ, µ, . . . , the components of covari-
23) When these quantities are given, so are the mean values of the components of the

vector s and all their powers and products 2, 3, . . . , 2s at a time, which do not reduce to
lower powers (see §55, Problem 3).
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ant and contravariant spinors correspond to values of the angular-momentum
component which differ in sign. In terms of the functions ψs∼ therefore, time
reversal corresponds to a change from ψsσ to ψs,−σ, as it should, since a change
in the sign of the time changes the direction of the angular momentum. The
exact relation is given by (60.1):

ψrev
s,−σ = ψ∗

sσ(−1)s−σ. (60.2)

Thus the change ψsσ → ψ∗
sσ required by the operation of time reversal signifies

the change24)
ψsσ → ψs,−σ(−1)s−σ (60.3)

When this operation is repeated, we have

ψsσ → ψs,−σ(−1)s−σ → ψsσ(−1)s−σ(−1)s+σ = ψsσ(−1)2s.

Thus a twofold time reversal restores the wave function to its original
value only if the spin is integral; if the spin is half-integral, the sign of the
wave function is changed.

Let us consider an arbitrary system of interacting particles. The orbital
and spin angular momenta of such a system are not in general separately
conserved when relativistic interactions are taken into account. Only the
total angular momentum J is conserved. If there is no external field, each
energy level of the system has (2J + 1)-fold degeneracy. When an external
field is applied, the degeneracy is removed. The question arises whether the
degeneracy can be removed completely, i.e. so that the system has only
simple levels. This is closely related to the symmetry with respect to time
reversal.

In classical electrodynamics the equations are invariant with respect to
a change in the sign of the time, if the electric field is left unchanged and
the sign of the magnetic field is reversed.25) This fundamental property of
motion must be preserved in quantum mechanics. Hence, not only in a closed
system but in any external electric field (there being no magnetic field), there
is symmetry with respect to time reversal.

The wave functions of the system are spinors ψλµ..., whose rank n is twice
the sum of the spins sa of all the particles (n = 2

∑
sa); this sum may not

be equal to the total spin S of the system.
According to what was said above, we can assert that, in any electric

field, the wave function and its time reversal must correspond to states with
24) Note that the rule for the complex conjugate of a spherical harmonic function, ac-

cording to (28.9), coincides with the general rule (60.3).
25) See, for example, Fields, §17, and the end of §111 below.
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the same energy. If a level is non-degenerate, it is necessary that these states
should be identical, i.e. the corresponding wave functions must be the same
apart from a constant factor (both, of course, being expressed as similar
(covariant or contravariant) spinors).

We write ψrev
λµ... = Cψλµ... or, by (60.1),

ψλµ···∗ = Cψλµ..., (60.4)

where C is a constant.
Taking the complex conjugate of both sides of this equation, we obtain

ψλµ... = C∗ψ∗
λµ....

We lower the indices on the left-hand side of the equation and correspondingly
raise them on the right. This means that we multiply both sides of the
equation by gαλgβµ... and sum over the indices λ, µ, . . . ; on the right-hand
side we must use the fact that

gαλgβµ... = (−1)ngλαgµβ . . .

As a result we have
ψλµ... = C∗(−1)nψλµ···∗.

Substituting ψλµ···∗ from (60.4), we find

ψλµ... = (−1)nCC∗ψλµ....

This equation must be satisfied identically, i.e. we must have (−1)nCC∗ = 1.
Since, however, |C|2 is always positive, it is clear that this is possible only
for even n (i.e. for integral values of the sum

∑
sa). For odd n (half-integral

values of
∑
sa) the condition (60.4) cannot be fulfilled.26)

Thus we reach the result that an electric field can completely remove the
degeneracy only for a system with an integral value of the sum of the spins
of the particles. For a system with a half-integral value of this sum, in an
arbitrary electric field, all the levels must be doubly degenerate, and complex
conjugate spinors correspond to two different states with the same energy27)
(H. A. Kramers 1930).

One further, mathematical, comment may be made. A relation of the
form (60.4) with a real constant C is mathematically the condition that the

26) When the sum
∑
sa is integral (or halt-integral), all possible values of the total spin

S of the system are also integral (or half-integral).
27) If the electric field possesses a high (cubic) symmetry, fourfold degeneracy may occur

(see §99, including the Problem).
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components of the spinor may be put in correspondence with a set of real
quantities, and may be called the condition for the spinor to be “real”.28)
The impossibility of fulfilling the condition (60.4) for odd n signifies that
no real quantity can correspond to a spinor of odd rank. For even n, on
the other hand, the condition (60.4) can be satisfied, and C can be real. In
particular, a real vector can correspond to a symmetrical spinor of rank two
if the condition (60.4) is satisfied with C = 1:

ψλµ∗ = ψλµ

(as is easily seen by means of (57.8) and (57.9)). The condition (60.4) with
C = 1 is in fact the condition for a symmetrical spinor of any even rank to
be “real”.

28) It is meaningless to call the spinor real in the literal sense, since complex conjugate
spinors have different laws of transformation.
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CHAPTER IX

IDENTITY OF PARTICLES

§ 61. The principle of indistinguishability of similar
particles

IN classical mechanics, identical particles (electrons, say) do not lose
their “individuality”, despite the identity of their physical properties. For
we can imagine the particles at some instant to be “numbered”, and follow
the subsequent motion of each of these in its path; then at any instant the
particles can be identified.

In quantum mechanics the situation is entirely different. We have already
mentioned several times that, by virtue of the uncertainty principle, the
concept of the path of an electron ceases to have any meaning. If the position
of an electron is exactly known at a given instant, its coordinates have no
definite values even at the next instant. Hence, by localizing and numbering
the electrons at some instant, we make no progress towards identifying them
at subsequent instants; if we localize one of the electrons, at some other
instant, at some point in space, we cannot say which of the electrons has
arrived at this point.

Thus, in quantum mechanics, there is in principle no possibility of sep-
arately following each of a number of similar particles and thereby distin-
guishing them. We may say that, in quantum mechanics, identical particles
entirely lose their “individuality”. The identity of the particles with respect
to their physical properties is here very far-reaching: it results in the complete
indistinguishability of the particles.

This principle of the indistinguishability of similar particles, as it is called,
plays a fundamental part in the quantum theory of systems composed of
identical particles. Let us start by considering a system of only two particles.
Because of the identity of the particles, the states of the system obtained from
each other by merely interchanging the two particles must be completely
equivalent physically. This means that, as a result of this interchange, the
wave function of the system can change only by an unimportant phase factor.

193
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Let ψ(ξ1, ξ2) be the wave function of the system, ξ1 and ξ2 conventionally
denoting the three coordinates and the spin projection for each particle.
Then we must have

ψ(ξ1, ξ2) = eiαψ(ξ2, ξ1),

where α is some real constant. By repeating the interchange, we return to
the original state, while the function ψ is multiplied by e2iα. Hence it follows
that e2iα = 1, or eiα = ±1. Thus

ψ(ξ1, ξ2) = ±ψ(ξ2, ξ1).

We thus reach the result that there are only two possibilities: the wave
function is either symmetrical (i.e. it is unchanged when the particles are
interchanged) or antisymmetrical (i.e. it changes sign when this interchange
is made). It is obvious that the wave functions of all the states of a given
system must have the same symmetry; otherwise, the wave function of a state
which was a superposition of states of different symmetry would be neither
symmetrical nor antisymmetrical.

This result can be immediately generalized to systems consisting of any
number of identical particles. For it is clear from the identity of the parti-
cles that, if any pair of them has the property of being described by, say,
symmetrical wave functions, any other pair of such particles has the same
property. Hence the wave function of identical particles must either be un-
changed when any pair of particles are interchanged (and hence when the
particles are permuted in any manner), or change sign when any pair are
interchanged. In the first case we speak of a symmetrical wave function, and
in the second case of an antisymmetrical one.

The property of being described by symmetrical or antisymmetrical wave
functions depends on the nature of the particles. Particles described by
antisymmetrical functions are said to obey Fermi–Dirac statistics (or to be
fermions), while those which are described by symmetrical functions are said
to obey Bose-Einstein statistics (or to be bosons).1)

From the laws of relativistic quantum mechanics it can be shown (see
RQT, §25) that the statistics obeyed by particles is uniquely related to their
spin: particles with half-integral spin are fermions, and those with integral
spin are bosons.

1) This terminology refers to the statistics which describes a perfect gas composed of
particles with antisymmetrical and symmetrical wave functions respectively. In actual
fact we are concerned here not only with a different statistics, but essentially with a
different mechanics. Fermi statistics was proposed by E. Fermi for electrons in 1926, and
its relation to quantum mechanics was elucidated by P. A. M. Dirac (1926). Bose statistics
was proposed by S. N. Bose for light quanta, and generalized by A. Einstein (1924).
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The statistics of complex particles is determined by the parity of the
number of elementary fermions entering into their composition. For an inter-
change of two identical complex particles is equivalent to the simultaneous
interchange of several pairs of identical elementary particles. The inter-
change of bosons does not change the wave function, while the interchange
of fermions changes its sign. Hence complex particles containing an odd
number of elementary fermions obey Fermi statistics, while those containing
an even number obey Bose statistics. This result is, of course, in agreement
with the above rule, since a complex particle has an integral or a half-integral
spin according as the number of particles with half-integral spin entering into
its composition is even or odd.

Thus atomic nuclei of odd atomic weight (i.e. containing an odd number
of neutrons and protons) obey Fermi statistics, and those of even atomic
weight obey Bose statistics. For atoms, which contain both nuclei and elec-
trons, the statistics is evidently determined by the parity of the sum of the
atomic weight and the atomic number.

Let us consider a system composed of N identical particles, whose mutual
interaction can be neglected. Let ψ1, ψ2, . . . be the wave functions of the
various stationary states which each of the particles separately may occupy.
The state of the system as a whole can be defined by giving the numbers
of the states which the individual particles occupy. The question arises how
the wave function ψ of the whole system should be constructed from the
functions ψ1, ψ2, . . . .

Let p1, p2, . . . , pN be the numbers of the states occupied by the individual
particles (some of these numbers may be the same). For a system of bosons,
the wave function ψ(ξ1, ξ2, . . . , ξN) is given by a sum of products of the form

ψp1(ξ1)ψp2(ξ2) . . . ψpn(ξN), (61.1)

with all possible permutations of the different suffixes p1, p2, . . . ; this sum
clearly possesses the required symmetry property. For example, for a system
of two particles in different states (p1 ̸= p2),

ψ(ξ1, ξ2) =
1√
2
[ψp1(ξ1)ψp2(ξ2) + ψp1(ξ2)ψp2(ξ1)] . (61.2)

The factor 1/
√
2 is introduced for normalization purposes; all the func-

tions ψ1, ψ2, . . . are orthogonal and are supposed normalized.
In the general case of a system containing an arbitrary number N of

particles, the normalized wave function is

ψN1N2... =

(
N1!N2! . . .

N !

)1/2∑
ψp1(ξ1)ψp2(ξ2) . . . ψpN (ξN), (61.3)
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where the sum is taken over all permutations of the different suffixes p1, p2, . . . , pN
and the numbers Ni show how many of these suffixes have the same value
i (with

∑
Ni = N). In the integration of |ψ|2 over ξ1, ξ2, . . . , ξN , all terms

vanish except the squared modulus of each term of the sum;2) since the
total number of terms in the sum (61.3) is evidently N !/(N1!N2! . . . ), the
normalization factor in (61.3) is obtained.

For a system of fermions, the wave function ψ is an antisymmetrical
combination of the products (61.1). For a system of two particles we have

ψ(ξ1, ξ2) =
1√
2
[ψp1(ξ1)ψp2(ξ2)− ψp1(ξ2)ψp2(ξ1)] . (61.4)

For the general case of N particles, the wave function can be written in the
form of a determinant

ψN1N2... =
1√
N !

∣∣∣∣∣∣∣∣
ψp1(ξ) ψp1(ξ2) . . . ψp1(ξN)
ψp2(ξ) ψp2(ξ2) . . . ψp2(ξN)
. . . . . . . . . . . .

ψpN (ξ) ψpN (ξ2) . . . ψpN (ξN)

∣∣∣∣∣∣∣∣ . (61.5)

Here an interchange of two particles corresponds to an interchange of two
columns of the determinant, as a result of which the latter changes sign.

The following important result is a consequence of the expression (61.5).
If among the numbers p1, p2, . . . two are the same, two rows of the determi-
nant are the same, and it therefore vanishes identically. It will be different
from zero only when all the numbers p1, p2, . . . are different. Thus, in a sys-
tem consisting of identical fermions, no two (or more) particles can be in the
same state at the same time. This is called Pauli’s principle (1925).

§ 62. Exchange interaction

The fact that Schrödinger’s equation does not take account of the spin of
particles does not invalidate this equation or the results obtained by means
of it. This is because the electrical interaction of the particles does not
depend on their spins.3) Mathematically, this means that the Hamiltonian
of a system of electrically interacting particles (in the absence of a magnetic
field) does not contain the spin operators, and hence, when it is applied to

2) The integration over ξ is conventionally understood in §§63–65 as including integra-
tion over the coordinates and summation over σ.

3) This is true only so long as we consider the non-relativistic approximation. When
relativistic effects are taken into account, the interaction of charged particles does depend
on their spin.
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the wave function, it has no effect on the spin variables. Hence Schrödinger’s
equation is actually satisfied by each component of the wave function; in
other words, the wave function of the system of particles can be written in
the form of a product

ψ(ξ1, ξ2) = χ(σ1, σ2, . . . )φ(r1, r2, . . . ),

where the function φ depends only on the coordinates of the particles and
the function χ only on their spins. We call the former a coordinate or orbital
wave function, and the latter a spin wave function. Schrödinger’s equation
essentially determines only the coordinate function φ, the function χ remain-
ing arbitrary. In any instance where we are not interested in the actual spin
of the particles, we can therefore use Schrödinger’s equation and regard as
the wave function the coordinate function alone, as we have done hitherto.

However, despite the fact that the electrical interaction of the particles
is independent of their spin, there is a peculiar dependence of the energy of
the system on its total spin, arising ultimately from the principle of indistin-
guishability of similar particles.

Let us consider a system consisting of only two identical particles. By
solving Schrödinger’s equation we find a series of energy levels, to each of
which there corresponds a definite symmetrical or antisymmetrical coordi-
nate wave function φ(r1, r2). For, by virtue of the identity of the particles,
the Hamiltonian (and therefore the Schrödinger’s equation) of the system is
invariant with respect to interchange of the particles. If the energy levels are
not degenerate, the function φ(r1, r2) can change only by a constant factor
when the coordinates r1 and r2 are interchanged; repeating this interchange,
we see that this factor can only be4) ±1.

Let us first suppose that the particles have zero spin. The spin factor
for such particles is absent altogether, and the wave function reduces to the
coordinate function φ(r1, r2), which must be symmetrical (since particles
with zero spin obey Bose statistics). Thus not all the energy levels obtained
by a formal solution of Schrödinger’s equation can actually exist; those to
which antisymmetrical functions φ correspond are not possible for the system
under consideration.

The interchange of two similar particles is equivalent to the operation of
inversion of the coordinate system (the origin being taken to bisect the line
joining the two particles). On the other hand, the result of inversion is to
multiply the wave function φ by (−1)l, where l is the orbital angular mo-
mentum of the relative motion of the two particles (see §30). By comparing

4) When there is degeneracy we can always choose linear combinations of the functions
belonging to a given level, such that this condition is again satisfied.
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these considerations with those given above, we conclude that a system of
two identical particles with zero spin can have only an even orbital angular
momentum.

Next, let the system consist of two particles with spin 1/2 (say, elec-
trons). Then the complete wave function of the system (i.e. the product
of the function φ(r1, r2) and the spin function χ(σ1, σ2)) must certainly be
antisymmetrical with respect to an interchange of the two particles. Hence,
if the coordinate function is symmetrical, the spin function must be antisym-
metrical, and vice versa. We shall write the spin function in spinor form, i.e.
as a spinor χλµ of rank two, each of whose indices corresponds to the spin
of one of the electrons. A symmetrical spinor (χλµ = χµλ) corresponds to a
function symmetrical with respect to the spins of the two particles, and an
antisymmetrical spinor (χλµ = −χµλ) to an antisymmetrical function. We
know, however, that a symmetrical spinor of rank two describes a system
with total spin unity, while an antisymmetrical spinor reduces to a scalar,
corresponding to zero spin.

Thus we reach the following conclusion. The energy levels to which there
correspond symmetrical solutions φ(r1, r2) of Schrödinger’s equation can ac-
tually occur when the total spin of the system is zero, i.e. when the spins of
the two electrons are “antiparallel”, giving a sum of zero. The values of the
energy belonging to antisymmetrical functions φ(r1, r2), on the other hand,
require a value of unity for the total spin, i.e. the spins of the two electrons
must be “parallel”.

In other words, the possible values of the energy of a system of electrons
depend on their total spin. For this reason we can speak of a peculiar in-
teraction of the particles which results in this dependence. This is called
exchange interaction. It is a purely quantum effect, which entirely vanishes
(like the spin itself) in the passage to the limit of classical mechanics.

The following situation is characteristic of the case of a system of two
electrons which we have discussed. To each energy level there corresponds
one definite value of the total spin, 0 or 1. This one-to-one correspondence
between the spin values and the energy levels is preserved, as we shall see
below (§63), in systems containing any number of electrons. It does not hold,
however, for systems composed of particles whose spin exceeds 1/2.

Let us consider a system of two particles, each with arbitrary spin s. Its
spin wave function is a spinor of rank 4s:

χ

2s︷ ︸︸ ︷
λµ . . .

2s︷︸︸︷
ρσ ,

half (2s) of whose indices correspond to the spin of one particle, and the other
half to that of the other particle. The spinor is symmetrical with respect to
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the indices in each group. An interchange of the two particles corresponds to
an interchange of all the indices λ, µ, . . . of the first group with the indices
ρ, σ, . . . of the second group. In order to obtain the spin function of a state
of the system with total spin S, we must contract this spinor with respect to
2s−S pairs of indices (each pair containing one index from λ, µ, . . . and one
from ρ, σ, . . . ), and symmetrize it with respect to the remainder; as a result we
obtain a symmetrical spinor of rank 2S. However, the contraction of a spinor
with respect to a pair of indices means, as we know, the construction of a
combination antisymmetrical with respect to these indices. Hence, when the
particles are interchanged, the spin wave function is multiplied by (−1)2s−S.

On the other hand, the complete wave function of a system of two particles
must be multiplied by (−1)2s when they are interchanged (i.e. by +1 for
integral s and by −1 for half-integral s). Hence it follows that the symmetry
of the coordinate wave function with respect to an interchange of the particles
is given by the factor (−1)S, which depends only on S. Thus we reach the
result that the coordinate wave function of a system of two identical particles
is symmetrical when the total spin is even, and antisymmetrical when it is
odd.

Recalling what was said above concerning the relation between inter-
change of the particles and inversion of the coordinate system, we conclude
also that, when the spin S is even (odd), the system can have only an even
(odd) orbital angular momentum.

We see that here also a certain dependence is revealed between the possi-
ble values of the energy of the system and the total spin, but this dependence
is not necessarily one-to-one. The energy levels to which there correspond
symmetrical (antisymmetrical) coordinate wave functions can occur for any
even (odd) value of S.

Let us calculate how many different states of the system there are with
even and odd S. The quantity S takes 2s + 1 values: 2s, 2s − 1, . . . 0. For
any given S there are 2S+1 states differing in the value of the z-component
of the spin ((2s + 1)2 different states altogether). Let s be integral. Then,
among the 2s + 1 values of S, s + 1 are even and s odd. The total number
of states with even S is equal to the sum∑

S=0,2,...,2s

(2S + 1) = (2s+ 1)(s+ 1);

the remaining s(2s+1) states have odd S. Similarly, we find that, when s is
half-integral, there are s(2s+1) states with even values of S and (s+1)(2s+1)
with odd values.

PROBLEMS
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1. Determine the exchange splitting of the energy levels of a system of two
electrons, regarding the interaction of the electrons as a perturbation.

SOLUTION. Let the particles be (when their interaction is neglected) in states
with orbital wave functions φ1(r1) and φ2(r2). The states of the system with total
spin S = 0 and S = 1 correspond to symmetrized and antisymmetrized products
respectively:

φ =
1√
2
[φ1(r1)φ2(r2)± φ1(r2)φ2(r1)] .

The mean value of the operator of the interaction U(r2 − r1) of the particles in
these states is A± J , where

A =

∫∫
U |φ1(r1)|2|φ2(r2)|2dV1dV2,

J =

∫∫
Uφ1(r1)φ

∗
1(r2)φ2(r2)φ

∗
2(r1)dV1dV2

the latter being called the exchange integral. Omitting the additive constant A,
which is not an exchange term, we therefore find the level shifts ∆E0 = J,∆E1 =
−J (where the suffix indicates the value of S). These quantities can be represented
as the eigenvalues of the spin exchange operator5)

V̂exch = −(1/2)J(1 + 4ŝ1ŝ2) (1)

the eigenvalues of the product ŝ1ŝ2 are derived in §56, Problem 2.
If the electrons belong to different atoms, for example, the exchange integral

decreases exponentially with increasing distance R between the atoms. It is clear
from the form of the integrand that this integral is determined by the “overlap”
of the wave functions of the states φ1(r1) and φ2(r2); using the asymptotic law
of decrease of the wave functions of states of a discrete spectrum (cf. (21.6)), we
find that

J ∼ exp(−(κ1 + κ2)R), κ1 =
1

ℏ
√
2m|E|, κ2 =

1

ℏ
√
2m|E2|,

where E1 and E2 are the energy levels of the electron in the two atoms.
2. The same as Problem 1, but for a system of three electrons.
SOLUTION. Using formula (1), Problem 1, we can write the operator of pair-

wise exchange interaction in a system of three electrons as

V̂exch = −
∑

Jab(1/2 + 2ŝaŝb) (1)

where the summation is over pairs of particles 12, 13 and 23. The matrix elements
of the operators ŝaŝb between states with different values of the pair of numbers
σa, σb are given by formulae (55.6) as

⟨1/2, 1/2|sasb|1/2, 1/2⟩ = 1/4, ⟨1/2,−1/2|sasb|1/2,−1/2⟩ = −1/4,

5) First used by Dirac.
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⟨1/2,−1/2|sasb| − 1/2, 1/2⟩ = 1/2.

We first determine the energy corresponding to the greatest possible value of
the total-spin component Ms = σ1+σ2+σ3, viz. Ms = 3/2. This gives the energy
of the state with total spin S = 3/2. On calculating the corresponding diagonal
matrix element of the operator (1), we find

∆E3/2 = −(J12 + J13 + J23).

Next we take states with Ms = 1/2 This value can occur in three ways, de-
pending on which of the numbers σ1, σ2, σ3 is −1/2 (the other two being 1/2).
Thus for these states we should have a secular equation of the third degree. The
calculation can, however, be simplified immediately by noting that one of the roots
of this equation must correspond to the energy already found for the state with
S = 3/2, and the secular equation must therefore have the factor ∆E−∆E3/2. In
this way the calculation of the free term in the cubic equation can be avoided.6)

The leading terms of the equation are found to be

(∆E)3 + (J12 + J13 + J23)(∆E)2+

+ [J12J13 + J12J23 + J13J23 − (J2
12 + J2

13 + J2
23)]∆E + · · · = 0,

Dividing by ∆E + J12 + J13 + J23, we find the two energy levels corresponding to
states with spins S = 1/2:

∆E1/2 = ±[J2
12 + J2

13 + J2
23 − J12J13 − J12J23 − J13J23]

1/2.

Thus there are three energy levels, in accordance with the calculation in §63,
Problem 1

3. In which states can the 8Be nucleus decay into two α-particles?
SOLUTION. Since the α-particle has no spin, a system of two �-particles can

only have an even orbital angular momentum (equal to the total angular momen-
tum), and its states are even. The decay in question is therefore possible only from
even states of the 8Be nucleus with even total angular momentum.

§ 63. Symmetry with respect to interchange

By considering a system composed of only two particles, we have been
able to show that its coordinate wave functions φ(r1, r2) for the stationary
states must be either symmetrical or antisymmetrical. In the general case of
a system of an arbitrary number of particles, the solutions of Schrödinger’s

6) This device is particularly useful in similar calculations for systems with a larger
number of particles.
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equation (the coordinate wave functions) need not necessarily be either sym-
metrical or antisymmetrical with respect to the interchange of any pair of
particles, as the complete wave functions (which include the spin factor) must
be. This is because an interchange of only the coordinates of two particles
does not correspond to a physical interchange of them. The physical identity
of the particles here leads only to the fact that the Hamiltonian of the sys-
tem is invariant with respect to the interchange of the particles, and hence, if
some function is a solution of Schrödinger’s equation, the functions obtained
from it by various interchanges of the variables will also be solutions.

Let us first of all make some remarks regarding interchanges in general.
In a system of N particles, N ! different permutations in all are possible.
If we imagine all the particles to be numbered, each permutation can be
represented by a definite sequence of the numbers 1, 2, 3, . . . . Every such
sequence can be obtained from the natural sequence 1, 2, 3, . . . by successive
interchanges of pairs of particles. The permutation is called even or odd,
according as it is brought about by an even or odd number of such inter-
changes. We denote by the P̂ operators of permutations of N particles, and
introduce a quantity δP which is +1 if is an even permutation and −1 if it is
odd. If φ is a function symmetrical with respect to all the particles, we have

P̂φ = φ,

while, if φ is antisymmetrical with respect to all the particles, then
P̂φ = δPφ.

From an arbitrary function φ(r1, r2, . . . , rN), we can form a symmetrical
function by the operation of symmetrization, which can be written

φsym = const
∑
P

P̂φ, (63.1)

where the summation extends over all possible permutations. The formation
of an antisymmetrical function (an operation sometimes called alternation)
can be written as

φant = const
∑
P

δP P̂φ. (63.2)

Let us return to considering the behaviour, with respect to permutations,
of the wave functions φ of a system of identical particles.7) The fact that the

7) From the mathematical point of view, the problem is to find irreducible representa-
tions of the permutation group. A detailed account of the mathematical theory of permu-
tation (or symmetry) groups is given by H. Weyl, The Theory of Groups and Quantum
Mechanics, Methuen, London 1931; M. Hamermesh, Group Theory and its Application to
Physical Problems, Pergamon, London, 1962; I. G. Kaplan, Symmetry of Many-Electron
Systems, Academic Press, New York, 1974.
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Hamiltonian Ĥ of the system is symmetrical with respect to all the particles
means, mathematically, that Ĥ commutes with all the permutation operators
P̂ . These operators, however, do not commute with one another, and so they
cannot be simultaneously brought into diagonal form. This means that the
wave functions φ cannot be so chosen that each of them is either symmetrical
or antisymmetrical with respect to all interchanges separately.8)

Let us try to determine the possible types of symmetry of the functions
φ(r1, r2, . . . , rN) of N variables (or of sets of several such functions) with
respect to permutations of the variables. The symmetry must be such that it
cannot be increased, i.e. such that any additional operation of symmetriza-
tion or alternation, on being applied to these functions, would reduce them
either to linear combinations of themselves or to zero identically.

We already know two operations which give functions with the greatest
possible symmetry: symmetrization with respect to all the variables, and
alternation with respect to all the variables. These operations can be gener-
alized as follows.

We divide the set of all theN variables r1, r2, . . . , rN (or, what is the same
thing, the suffixes 1, 2, 3, . . . , N) into several sets, containing N1, N2, . . . el-
ements (variables); N1 + N2 + · · · = N . This division can be conveniently
shown by a diagram (known as a Young diagram) in which each of the num-
bers N1, N2, . . . is represented by a line of several cells (thus, Fig. 21 gives a
diagram of the divisions 6 + 4 + 4 + 3 + 3 + 1 + 1 and 7 + 5 + 5 + 3 + 1 + 1
for N = 22); one of the numbers 1, 2, 3, . . . is to be placed in each square. If
we place the lines in order of decreasing length (as in Fig. 10), the diagram
contains not only successive horizontal rows, but also vertical columns.

Let us symmetrize an arbitrary function φ(r1, r2, rN) with respect to the
variables in each row. The alternation operation can then be performed only

FIG.21

with respect to the variables in dif-
ferent rows; alternation with respect
to a pair of variables in the same row
clearly gives zero identically.

Having chosen one variable from
each row, we can, without loss of
generality, regard them as being in
the first cells in each row (after sym-
metrization, the order of the vari-

ables among the cells in each row is immaterial); let us alternate with respect
to these variables. Having then deleted the first column, we alternate with

8) Except for a system of only two particles, where there is a single interchange operator,
which can be brought into diagonal form simultaneously with the Hamiltonian.
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respect to variables chosen one from each row in the thus “curtailed” dia-
gram; these variables can again be regarded as being in the first cells of the
“curtailed” rows. Continuing this process, we finally have the function first
symmetrized with respect to the variables in each row and then alternated
with respect to the variables in each column. After alternation, of course,
the function in general ceases to be symmetrical with respect to the variables
in each row. The symmetry is preserved only with respect to the variables
in the cells of the first row which project beyond the other rows.

Having distributed the N variables in various ways among the rows of a
Young diagram (the distribution among the cells in each row is immaterial),
we thus obtain a series of functions, which are transformed linearly into one
another when the variables are permuted in any manner.9) However, it
must be emphasized that not all these functions are linearly independent;
the number of independent functions is in general less than the number of
possible distributions of the variables among the rows of the diagram. We
shall not pause here, however, to discuss this more closely.10)

Thus any Young diagram determines some type of symmetry of functions
with respect to permutations. By constructing all the possible Young dia-
grams (for a given N), we find all possible types of symmetry. This amounts
to dividing the number N in all possible ways into a sum of smaller terms,
including the number N itself; thus for N = 4 the possible partitions are
4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

To each energy level of the system we can make correspond a Young
diagram which determines the permutational symmetry of the appropriate
solutions of Schrödinger’s equation; in general, several different functions
correspond to each value of the energy, and these are transformed linearly
into each other by permutations. The existence of this “permutational de-
generacy” is related to the fact that the operators P̂ each commute with the
Hamiltonian but not with one another (see the middle of §10). However, it
must be emphasized that this does not signify any additional physical de-
generacy of the energy levels. All these different coordinate wave functions,
multiplied by the spin functions, enter into a single definite combination—
the complete wave function—which satisfies (according to the spin of the

9) It would be possible to perform the symmetrization and alternation in the reverse
order: to alternate with respect to the variables in each column, and then to symmetrize
with respect to those in the rows. This, however, would give effectively the same thing,
since the functions obtained by the two methods are linear combinations of one another.

10) The independent functions that are transformed into linear combinations of one an-
other form the basis of an irreducible representation of the permutation group. Their
number is the dimension of the representation. For particles with spin 1/2 the number is
derived in Problem 1 below.



Chap. IX IDENTITY OF PARTICLES 205

particles) the condition of symmetry or antisymmetry.
Among the various types of symmetry there are always (for any given N)

two to each of which only one function corresponds. One of these corresponds
to a function symmetrical with respect to all the variables, and the other to
one which is similarly antisymmetrical; in the first case, the Young diagram
consists of a single row of N cells, and in the second case of a single column.

Let us now consider the spin wave functions χ(σ1, σ2, . . . , σN). Their
kinds of symmetry with respect to permutations of the particles are given
by the same Young diagrams, with the components of the spins of the parti-
cles taking the part of variables. There arises the question of what diagram
must correspond to the spin function for a given diagram of the coordinate
function. Let us first suppose that the spin of the particles is integral. Then
the complete wave function ψ must be symmetrical with respect to all the
particles. For this to be so, the symmetry of the spin and coordinate func-
tions must be given by the same Young diagram, and the complete wave
function ψ is expressed as definite bilinear combinations of the two; we shall
not here pause to examine more closely the problem of constructing these
combinations.

Next, suppose the spin of the particles to be half-integral. Then the com-
plete wave function must be antisymmetrical with respect to all the particles.
It can be shown that, for this to be so, the Young diagrams for the coordinate
and spin functions must be in dual relation, i.e. obtained from each other by
interchanging rows and columns (as in the two diagrams shown in Fig. 10)

Let us consider in more detail the important case of particles with spin
1/2 (electrons, for instance). Each of the spin variables σ1, σ2, . . . here takes
only the two values ±1/2. Since a function antisymmetrical with respect
to any two variables vanishes when these variables take the same value, it
is clear that the function χ can be alternated only with respect to pairs of
variables; if we alternate with respect to even three variables, two of them
must always take the same value, so that we have zero identically.

Thus, for a system of electrons, the Young diagrams for the spin functions
can contain columns of only one or two cells (i.e. only one or two rows); in the
Young diagrams for the coordinate functions, the same is true of the number
of columns. The number of possible types of permutational symmetry for a
system of N electrons is therefore equal to the number of possible partitions
of the number N into a sum of ones and twos. When N is even, this number
is N/2+1 (partitions with 0, 1, . . . , N/2 twos), while if N is odd it is (N+1)/2
(partitions with 0, 1, . . . , (N − 1)/2 twos). Thus, for instance, Fig. 11 shows
the possible Young diagrams (coordinate and spin) for N = 4.

It is easy to see that each of these types of symmetry (i.e. each of the
Young diagrams) corresponds to a definite total spin S of the system of
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electrons. We shall consider the spin functions in spinor form, i.e. as spinors
χλµ... of rank N , whose indices (each of which corresponds to the spin of an
individual particle) will be the variables that are arranged in the cells of the

S = 2 S = 1 S = 0

χ

φ

FIG.22

Young diagrams. Let us examine the
Young diagram consisting of two rows
with N1 and N2 cells (N1 + N2 = N ,
and N1 ⩾ N2). In each of the first
N2 columns there are two cells, and the
spinor must be antisymmetrical with re-
spect to the corresponding pairs of in-
dices. With respect to the indices in the
last n = N1 − N2 cells in the first row,
however, it must be symmetrical. As we
know, such a spinor of rank N reduces to a symmetrical spinor of rank n,
to which there corresponds a total spin S = n/2. Returning to the Young
diagrams for the coordinate functions, we can say that the diagram with n
rows each of one cell corresponds to a total spin S = n/2. For even N , the
total spin can take integral values from 0 to N/2, while for odd N it can take
half-integral values from 1/2 to N/2, as it should.

We emphasize that this one-to-one correspondence between the Young
diagrams and the total spin holds only for systems of particles with spin 1/2;
we have seen this, for a system of two particles, in the previous section. For
a system of N particles with spin s, the spin wave function is made up of a
product of N symmetrical spinors of rank 2s, i.e. is a spinor of rank 2Ns.
If this spinor is symmetrized according to a particular Young diagram of N
cells, we can usually construct from the independent components of the sym-
metrized spinor several sets of linear combinations, each set corresponding
to a different total spin S of the system.

In the same way as the Young diagram for the spin functions of particles
with spin 1/2 cannot contain columns of more than two cells, so for particles
with any spin s the columns cannot contain more than 2s+ 1 cells.

If the number N of particles in the system is an integral multiple of
2s + 1, the possible Young diagrams include a rectangle with 2s + 1 cells in
each column. This corresponds to one definite value of the total spin, S = 0.
Hence we can conclude that the same value of S corresponds to any two
(spin) Young diagrams which can be fitted together to form a rectangle of
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height 2s+ 1.11) This is a simple consequence of the fact that the addition
of two angular momenta can give zero only if they have the same absolute
magnitude.

To conclude this section, let us return to the fact already mentioned in the
footnote at the end of §20 that, for a system of several identical particles, we
cannot assert that the wave function of the stationary state of lowest energy
is without nodes. We can now amplify this statement and elucidate its origin.

The wave function (that is, the coordinate function), if it has no nodes,
must certainly be symmetrical with respect to all the particles; for, if it were
antisymmetrical with respect to the interchange of any pair of particles 1, 2,
it would vanish for r1 = r2. If, however, the system consists of three or more
electrons, no completely symmetrical coordinate wave function is possible
(the Young diagram of the coordinate function cannot have rows with more
than two cells). Thus, although the solution of Schrödinger’s equation which
corresponds to the lowest eigenvalue is without nodes (by the theorem of
the variational calculus), this solution may be physically inadmissible; the
smallest eigenvalue of Schrödinger’s equation will not then correspond to the
normal state of the system, and the wave function of this state will in general
have nodes. For particles with a half-integral spin s, this situation occurs in
systems with more than 2s+1 particles. For systems of bosons, a completely
symmetrical coordinate wave function is always possible.

PROBLEMS
1.Determine the number of energy levels with different values of the total spin

S, for a system of N particles with spin 1/2.
SOLUTION. A given value of the projection of the total spin of the system,

MS =
∑
σ, can be obtained in

f(MS) =
N !(

N
2 +MS

)
!
(
N
2 −MS

)
!

ways, with N/2 +MS particles taken to have σ = 1/2 and the remainder σ =
−1/2. To each energy level with a given S, there correspond 2S + 1 states with
MS = S, S−1, . . . ,−S. Hence it is easy to see that the number of different energy
levels with a given value of S is

n(S) = f(S)− f(S + 1) =
N !(2S + 1)(

N
2 + S + 1

)
!
(
N
2 − S

)
!
.

11) For example, the two diagrams (for s = 1):

The continuous and broken lines show the complementary diagrams.
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The total number of different energy levels is

n =
∑
S

n(S) = f(0) =
N !(
N
2 !
)2

for even N , and
n = f

(
1

2

)
=

N !(
N+1
2

)
!
(
N−1
2

)
!

for odd N .
2. Find the values of the total spin S that occur for various types of symmetry

of the spin functions of a system of two, three or four particles with spin 1.
SOLUTION. For two particles, the correspondence is established by the fact

that the factor by which the spin function is multiplied when the particles are
interchanged must be (−1)2s−S (see the end of §62). For particles with spin s = 1
this gives

S = 0, 2

S = 1

(a) (b) (1)

The Young diagrams for a system of three particles are obtained by adding to
the diagrams (1) one cell in every possible way. The result may be written as the
symbolic equations

0, 2
×

1
=

(a)

+

(b)

︸ ︷︷ ︸
1,1,2,3

1

×

1

=

(b)

+

(c)

︸ ︷︷ ︸
0,1,2

The values of S are shown beneath each diagram, and the values of the total spin of
the system of three particles (the diagrams on the right) are found from the spins
of the two-particle and one-particle systems (the diagrams on the left) by the rule
of addition of angular momenta.12) The distribution of the resulting values of
S among the diagrams on the right is established by noting that diagram (c) (a
column of three cells) corresponds to S = 0, and (b) therefore to the remaining

12) The repetition of 1 beneath the right-hand diagrams occurs because this value of the
angular momentum comes firstly from adding the angular momenta 0 and 1, and secondly
from adding 2 and 1.
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values 1 and 2 in the second equation, while (a) belongs to the values 1 and 3 that
are left after (b) has been labelled in the first equation:

(a)

S = 1, 3

(b)

S = 1, 2

(c)

S = 0

(2)

The Young diagrams for a system of four particles are obtained by adding one cell
to the diagrams (2), with the condition that no column should contain more than
three cells:

1, 3
×

1
=

(a)

+

(b)

︸ ︷︷ ︸
0,1,2,2,3,4

1, 2

×

1

=

(b)

+

(c)

+

(d)

︸ ︷︷ ︸
0,1,1,2,2,3

0

×
1

=

(d)

1

Diagram (c) can be added to (a) in (1) to form a rectangle with three-cell columns,
and therefore corresponds to the same values S = 0, 2. The values of S for diagram
(b) are found from the remainder of the second equation, and then those for (a)
from the remainder of the first equation:

(a)

S = 0, 2, 4

(b)

S = 1, 2, 3

(c)

S = 0, 2

(d)

S = 1

§ 64. Second quantization. The case of Bose statistics

In the theory of systems consisting of a large number of identical par-
ticles, there is a widely used method of considering the problem, known as
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second quantization. This method is especially necessary in relativistic the-
ory, where we have to deal with systems in which the number of particles is
itself variable.13)

Let ψ1(ξ), ψ2(ξ), . . . be some complete set of orthogonal and normalized
wave functions of stationary states of a single particle.14) These may be
states of a particle in some arbitrarily chosen external field, but are usually
taken to be simply plane waves, i.e. the wave functions of a free-particle
having definite values of the momentum (and spin projection). In order to
make the spectrum of states discrete, we shall consider the motion of particles
in a large but finite region, for which the eigenvalues of the momentum
components form a discrete series, the intervals between adjacent values being
inversely proportional to the linear dimensions of the region and tending to
zero as these increase.

In a system of free particles, the particle momenta are separately con-
served. The occupation numbers of the states are therefore also conserved,
i.e. the numbers N1, N2, . . . which show how many particles are in each of
the states ψ1, ψ2, . . . . In a system of interacting particles, the momentum of
each particle is not conserved, and so the occupation numbers are not con-
served. For such a system we can consider only the probability distribution
of the various values of the occupation numbers. Let us seek to construct a
mathematical formalism in which the occupation numbers (and not the co-
ordinates and spin projections of the particles) play the part of independent
variables.

In this formalism, it is convenient to use the Dirac notation (see the
end of §11), taking N1, N2, . . . as quantum numbers defining the state. The
states corresponding to the wave functions (61.3) and (61.5) will be denoted
by |N1, N2, . . .⟩. The coordinate and spin variables of the particles are not
shown explicitly.

In accordance with this choice of the independent variables, the operators
of the various physical quantities (including the Hamiltonian of the system)
must be formulated in terms of their action on functions of the occupation
numbers. Such a formulation can be obtained on the basis of the usual
matrix representation of operators. The operator matrix elements must be
considered in relation to the wave functions of the stationary states of a
system of non-interacting particles. Since these states can be described by

13) The method of second quantization was developed by P. A. M. Dirac (1927) for
photons in radiation theory, and later extended to fermions by E. Wigner and P. Jordan
(1928).

14) As in §61, ξ denotes the set of the coordinates and the spin projection σ of the particle,
and integration with respect to ξ is taken to mean integration over the coordinates and
summation over σ.
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specifying definite values of the occupation numbers, this will also show the
nature of the action of the operators on these variables.

Let us first consider systems of particles obeying Bose statistics. Let f̂ (1)
a

be the operator of some quantity pertaining to the ath particle, i.e. acting
only on functions of the variables ξa. We introduce the operator

F̂ (1) =
∑
a

f̂ (1)
a (64.1)

which is symmetrical with respect to all the particles (the summation being
over all particles), and determine its matrix elements with respect to the wave
functions (61.3). First of all, it is easy to see that the matrix elements will be
different from zero only for transitions which leave the numbers N1, N2, . . .
unchanged (diagonal elements) and for transitions where one of these num-
bers is increased, and another decreased, by unity. For, since each of the oper-
ators f̂ (1)

a acts only on one function in the product ψp1(ξ1)ψp2(ξ2) . . . ψpN (ξN),
its matrix elements can be different from zero only for transitions whereby
the state of a single particle is changed; this, however, means that the num-
ber of particles in one state is diminished by unity, while the number in
another state is correspondingly increased. The calculation of these matrix
elements is in principle very simple; it is easier to do it oneself than to follow
an account of it. Hence we shall give only the result of this calculation. The
non-diagonal elements are〈

Ni, Nk − 1|F (1)|Ni − 1, Nk

〉
= f

(1)
ik

√
NiNk. (64.2)

We shall indicate only those suffixes with respect to which the matrix element
is non-diagonal, omitting the remainder for brevity. Here f (1)

ik is the matrix
element

f
(1)
ik =

∫
ψ∗
i (ξ)f̂

(1)ψk(ξ)dξ; (64.3)

since the operators f (1)
a differ only in the naming of the variables on which

they act, the integrals (64.3) are independent of a, which is therefore omitted.
The diagonal matrix elements of F (1) are the mean values of the quantity F (1)

in the states ΨN1N2.... Calculation gives

F (1) =
∑
i

f
(1)
ii Ni. (64.4)

We now introduce the operators âi, which play a leading part in the
method of second quantization; they act, not on functions of the coordinates,
but on functions of the occupation numbers. By definition, the operator âi
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acting on the function |N1, N2, . . .⟩ decreases the value of the variable Ni by
unity, and at the same time it multiplies the function by

√
Ni:15)

âi |N1, N2, . . . , Ni, . . .⟩ =
√
Ni |N1, N2, . . . , Ni − 1, . . .⟩ . (64.5)

We can say that the operator âi diminishes by one the number of particles
in the ith state; it is therefore called a particle annihilation operator. It can
be represented in the form of a matrix whose only non-zero element is

⟨Ni − 1|ai|Ni⟩ =
√
Ni. (64.6)

The operator â†i which is the Hermitian conjugate of âi is, by definition
(see (11.9)), represented by a matrix whose only non-zero element is

⟨Ni| a†i |Ni − 1⟩ = ⟨Ni − 1|ai|Ni⟩∗ =
√
Ni (64.7)

This means that, when acting on the function Φ(N1, N2, . . . ). it increases
the number Ni by unity:

â†i |N1, N2, . . . , Ni, . . .⟩ =
√
Ni + 1 |N1, N2, . . . , Ni + 1, . . .⟩ . (64.8)

In other words, the operator â†i increases by one the number of particles in
the ith state, and is therefore called a particle creation operator.

The product of the operators â†i âi, acting on the wave function, must mul-
tiply it by a constant simply, leaving unchanged all the variables N1, N2, . . . :
the operator âi diminishes Ni by unity, and â†i then restores it to its original
value. Direct multiplication of the matrices (64.6) and (64.7) shows that â†i âi
is represented, as we should expect, by a diagonal matrix whose diagonal
elements are Ni. We can write

â†i âi = Ni. (64.9)

Similarly, we find that
âiâ

†
i = Ni + 1. (64.10)

The difference of these equations gives the commutation rule for the op-
erators âi and â†i :

âiâ
†
i − â†i âi = 1. (64.11)

The operators with i and k different act on different variables (Ni and Nk),
and commute:

âiâk − âkâi = 0, âiâ
†
k − â†kâi = 0, i ̸= k. (64.12)

15) Here we use the notation â |m⟩ with the natural sense of the result of the operator â
acting on the state wave function |m⟩ .
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From the above properties of the operators âi, â†i it is easy to see that the
operator

F̂ (1) =
∑
i,k

= f
(1)
ik â

†
i âk (64.13)

is the same as the operator (64.1). For all the matrix elements calculated
from (64.6), (64.7) are the same as the elements (64.2), (64.4). This is a very
important result. In formula (64.13), the quantities f (1)

ik are simply numbers.
Thus we have been able to express an ordinary operator, acting on functions
of the coordinates, in the form of an operator acting on functions of new
variables, the occupation numbers Ni.

The result which we have obtained is easily generalized to operators of
other forms. Let

F̂ (2) =
∑
a>b

f̂
(2)
ab , (64.14)

where f̂ (2)
ab is the operator of a physical quantity pertaining to two particles

at once, and hence acts on functions of ξa and ξb. Similar calculations show
that this operator can be expressed in terms of the operators âi, â†i by

F̂ (2) =
1

2

∑
i,k,l,m

〈
ik|f (2)|lm

〉
â†i â

†
kâmâl, (64.15)

where 〈
ik|f (2)|lm

〉
=

∫∫
ψ∗
i (ξ1)ψ

∗
k(ξ2)f̂

(2)ψl(ξ1)ψm(ξ2)dξ1dξ2.

The generalization of these formulae to operators of any other form symmet-
rical with respect to all the particles (of the form F̂ (3) =

∑
f̂
(3)
abc, etc.) is

obvious.
These formulae can be used to express, in terms of the operators âi and

â†i , the Hamiltonian of the physical system of N identical interacting par-
ticles that is being considered. The Hamiltonian of such a system is, of
course, symmetrical with respect to all the particles. In the non-relativistic
approximation,16) it is independent of the spins of the particles, and can be
represented in a general form as follows:

Ĥ =
∑
a

Ĥ(1)
a +

∑
a>b

U (2)(ra, rb) +
∑
a>b>c

U (3)(ra, rb, rc) + . . . (64.16)

Here Ĥ(1)
a is the part of the Hamiltonian which depends on the coordinates

of the ath particle only:

Ĥ(1)
a = − ℏ2

2m
∆a + U (1)(ra). (64.17)

16) n the absence of a magnetic field.
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where U (1)(ra) is the potential energy of a single particle in the external field.
The remaining terms in (64.16) correspond to the mutual interaction energy
of the particles; the terms depending on the coordinates of two, three, etc.
particles have been separated.

This representation of the Hamiltonian enables us to apply formulae
(64.13), (64.15) and their analogues directly. Thus

Ĥ =
∑
i,k

H
(1)
ik â

†
i âk +

1

2

∑
i,k,l,m

〈
ik|U (2)|lm

〉
â†i â

†
kâmâl . . . (64.18)

This gives the required expression for the Hamiltonian in the form of an
operator acting on functions of the occupation numbers.

For a system of non-interacting particles, only the first term in the ex-
pression (64.18) remains:

Ĥ =
∑
i,k

H
(1)
ik â

†
i âk. (64.19)

If the functions ψi are taken to be the eigenfunctions of the Hamiltonian
Ĥ(1) of an individual particle, the matrix Ĥ(1)

ik is diagonal, and its diagonal
elements are the eigenvalues εi of the energy of the particle. Thus,

Ĥ =
∑
i

εiâ
†
i âi;

replacing the operator â†i âi by its eigenvalues (64.9), we have for the energy
levels of the system the expression

E =
∑
i

εiNi

a trivial result which could have been foreseen.
The formalism which we have developed can be put in a more compact

form by introducing the ψ-operators17)

ψ̂(ξ) =
∑
i

ψi(ξ)âi ψ̂†(ξ) =
∑
i

ψ∗(ξ)â†i , (64.20)

17) Note the analogy between (64.20) and the expansion

ψ =
∑

aiψi

of any wave function in terms of a complete set of functions. Here it is “re-quantized”,
and this is the reason for the term second quantization method.
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where the variables ξ are regarded as parameters. By what has been said
above concerning the operators âi, â†i , it is clear that the operator ψ̂ decreases
the total number of particles in the system by one, while ψ̂† increases it by
one.

It is easy to see that the operator ψ̂†(ξ0) creates a particle at the point
ξ0. For the result of the action of the operator â†i is to create a particle in a
state with wave function ψi(ξ). Hence it follows that the result of the action
of the operator ψ̂†(ξ0) is to create a particle in a state with wave function∑

i

ψ∗
i (ξ)ψi(ξ0) = δ(ξ − ξ0),

which corresponds to a particle with definite values of the coordinates (and
spin). Here we have used formula (5.12).18)

The commutation rules for the ψ operators are obtained at once from
those for the operators âi, â†i :

ψ̂(ξ)ψ̂(ξ′)− ψ̂(ξ′)ψ̂(ξ) = 0, (64.21)

ψ̂(ξ)ψ̂†(ξ′)− ψ̂†(ξ′)ψ̂(ξ) =
∑
i

ψi(ξ)ψ
∗
i (ξ

′) = δ(ξ − ξ′). (64.22)

The second-quantized operator F̂ (1) can be written by means of the ψ
operators in the form

F̂ (1) =

∫
ψ̂†(ξ)f̂ (1)ψ̂(ξ)dξ (64.23)

where it is understood that the operator f̂ (1) acts on functions of the param-
eters ξ in ψ̂(ξ). For, substituting ψ̂ and ψ̂† in the form (64.20) and using the
definition (64.3), we return to (64.13). Similarly, (64.15) becomes

F̂ (2) =
1

2

∫∫
ψ̂†(ξ)ψ̂†(ξ′)f̂ (2)ψ̂(ξ′)ψ̂(ξ)dξdξ′. (64.24)

In particular, the Hamiltonian of the system, expressed in terms of the ψ
operators, is

Ĥ =

∫ {
− ℏ2

2m
ψ̂†(ξ)∆ψ̂(ξ) + ψ̂†(ξ)U (1)(ξ)ψ̂(ξ)

}
dξ+

+
1

2

∫∫
ψ̂†(ξ)ψ̂†(ξ′)U (2)(ξ, ξ′)ψ̂(ξ′)ψ̂(ξ)dξdξ′ + . . . (64.25)

18) δ(ξ − ξ0) conventionally denotes the product

δ(x− x0)δ(y − y0)δ(z − z0)δσσ0
.
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The operator ψ̂†(ξ)ψ̂(ξ), constructed from the ψ operators by analogy
with the product ψ∗ψ which determines the probability density for a particle
in a state with wave function ψ, is called the particle density operator. The
integral

N̂ =

∫
ψ̂†ψ̂dξ (64.26)

represents in the second-quantization formalism the operator of the total
number of particles in the system. For, substituting the ψ operators in the
form (64.20) and using the normalization and the orthogonality of the wave
functions, we have

N̂ =
∑

â†i âi.

Each term in this sum is the operator of the number of particles in the ith
state; according to (64.9), its eigenvalues are equal to the occupation numbers
Ni, and the sum of all these numbers is the total number of particles in the
system.19)

Lastly, if the system consists of bosons of various kinds, operators â and â†
for each kind of particle must be defined in the second quantization method.
It is evident that operators pertaining to particles of different kinds commute.

§ 65. Second quantization. The case of Fermi statistics

The basic theory of the method of second quantization remains wholly
unchanged for systems of identical fermions, but the actual formulae for the
matrix elements of quantities and for the operators âi are naturally different.

The wave function ψN1N2... now has the form (61.5). Because of the an-
tisymmetry of this function, the question of its sign arises first of all. This
question did not arise in the case of Bose statistics, since, because of the
symmetry of the wave function, its sign, once chosen, was preserved under
all permutations of the particles. In order to make definite the sign of the
function (61.5), we shall agree to choose it as follows. We number succes-
sively, once and for all, all the states ψi. We then complete the rows of the
determinant (61.5) so that always

p1 < p2 < p3 < · · · < pN , (65.1)
whilst in the successive columns we have functions of the different variables in
the order ξ1, ξ2, . . . , ξN . No two of the numbers p1, p2, . . . can be equal, since

19) For systems containing a specified number of particles these statements are trivial,
as are the properties of the Hamiltonian (64.19) of a system of free particles. Their
generalization in the relativistic theory, however, yields new results that are by no means
trivial (cf. RQT, §11)
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otherwise the determinant would vanish. In other words, the occupation
numbers Ni can take only the values 0 and 1.

Let us again consider an operator of the form (64.1), F̂ (1) =
∑
f̂
(1)
a . As

in §64, its matrix elements will be non-zero only for transitions where all the
occupation numbers remain unchanged and for those where one occupation
number (Ni) is diminished by unity (becoming zero instead of one) and an-
other (Nk) is increased by unity (becoming one instead of zero). We easily
find that, for i < k,〈

1i, 0k|F (1)|0i, 1k
〉
= f

(1)
ik (−1)

∑
(i+1,k−1). (65.2)

where by 0i, 1i we signify Ni = 0, Ni = 1 and the symbol
∑

(k, l) denotes the
sum of the occupation numbers of all states from the kth to the lth:20)

∑
(k, l) =

l∑
n=k

Nn.

For the diagonal elements we obtain our previous formula (64.4):

F (1) =
∑
i

f
(1)
ii Ni (65.3)

In order to represent the operator F̂ (1) in the form (64.13), the operators
âi must be defined as matrices whose elements are

⟨0i|ai|1i⟩ = ⟨1i| a†i |0i⟩ = (−1)
∑

(1,i−1). (65.4)

On multiplying these matrices, we find, for k > i,

⟨1i, 0k| a†iak |0i, 1k⟩ = ⟨1i, 0k| a†i |0i, 0k⟩ ⟨0i, 0k|ak|0i, 1k⟩ =
= (−1)

∑
(1,i−1)(−1)

∑
(1,i−1)+

∑
(i+1,k−1)

or
⟨1i, 0k| a†iak |0i, 1k⟩ = (−1)

∑
(i+1,k−1). (65.5)

If i = k, the matrix of â†i âi is diagonal, and its elements are unity for Ni = 1,
and zero for Ni = 0; this can be written

â†i âi = Ni. (65.6)

On substituting these expressions in (64.13), we in fact obtain (65.2), (65.3).
20) For i > k the exponent in (65.2) becomes

∑
(k+1, i− 1). The sum must be taken as

zero when i = k ± 1.
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Multiplying â†i , âk in the opposite order, we have

⟨1i, 0i| akâ†i |0i, 1k⟩ = ⟨1i, 0k|ak|1i, 1k⟩ ⟨1i, 1k| a†i |0i, 1k⟩ =
= (−1)

∑
(1,i−1)+

∑
(i+1,k−1)+

∑
(1,i−1)+1

or
⟨1i, 0k| aka†i |0i, 1k⟩ = −(−1)

∑
(i+1,k−1). (65.7)

Comparing (65.7) with (65.5), we see that these quantities have opposite
signs, i.e.

âiâ
†
k + âkâ

†
i = 0, i ̸= k.

For the diagonal matrix âiâ†i , we find

âiâ
†
i = 1−Ni (65.8)

Adding this to (65.6), we obtain

âiâ
†
i + â†i âi = 1.

Both the above equations can be written in the form

âiâ
†
k + â†kâi = δik. (65.9)

On carrying out similar calculations, we find for the products âiâk the rela-
tions

âiâk + âkâi = 0, (65.10)
and in particular âiâi = 0.

Thus we see that the operators âi and âk (or â†k) for i ̸= k anticommute,
whereas in the case of Bose statistics they commuted with one another. This
difference is perfectly natural. In the case of Bose statistics, the operators âi
and âk were completely independent; each of the operators âi acted only on a
single variable Ni, and the result of this action did not depend on the values
of the other occupation numbers. In the case of Fermi statistics, however,
the result of the action of the operator âi depends not only on the number
Ni itself, but also on the occupation numbers of all the preceding states, as
we see from the definition (65.4). Hence the action of the various operators
âi, âk cannot be considered independent.

The properties of the operators âi, â†i having been thus defined, all the
remaining formulae (64.13)–(64.18) remain valid. The formulae (64.23)–
(64.25), which express the operators of physical quantities in terms of the ψ-
operators defined by (64.20), also hold good. The commutation rules (64.21),
(64.22), however, are now replaced by

ψ̂†(ξ′)ψ̂(ξ) + ψ̂(ξ)ψ̂†(ξ′) = δ(ξ − ξ′), (65.11)



Chap. IX IDENTITY OF PARTICLES 219

ψ̂(ξ′)ψ̂(ξ) + ψ̂(ξ)ψ̂(ξ′) = 0. (65.12)
If the system consists of particles of different kinds, second quantization

operators must be defined for each kind of particle (as already mentioned at
the end of §64). Operators belonging to bosons and fermions commute; those
belonging to different fermions may formally be regarded as either commu-
tative or anticommutative within the limits of non-relativistic theory. On
either assumption the results obtained by means of the second quantization
method are the same.

However, with a view to later applications in the relativistic theory, which
allows different particles to be transformed into one another, we should as-
sume that the creation and annihilation operators for different fermions an-
ticommute. This becomes evident if we regard as “different” particles two
different internal states of a single complex particle.



220 SECOND QUANTIZATION. THE CASE OF FERMI STATISTICS § 65



MATHEMATICAL APPENDICES

§ a. Hermite polynomials

The equation
y′′ − 2xy′ + 2ny = 0 (a.1)

belongs to a class which can be solved by what is called Laplace’s method.21)
This method is applicable to any linear equation of the form

n∑
m=0

(am + bmx)
dmy

dxm
= 0,

whose coefficients are of degree in x not higher than the first, and consists in
the following procedure. We form the polynomials

P (t) =
n∑

m=0

amt
m, Q(t) =

n∑
m=0

bmt
m

and from them the function

Z(t) =
1

Q
exp

∫
P

Q
dt,

which is determined to within a constant factor. Then the solution of the
equation under consideration can be expressed as a complex integral:

y =

∫
C

Z(t)extdt,

where the path of integration C is taken so that the integral is finite and
non-zero, and the function

V = extQZ

returns to its original value when t describes the contour C (which may be
either closed or open).

21) See, for instance, E. Goursat, Cours d’Analyse Mathematique, Vol. II, Gauthier-
Villars, Paris; V. I. Smirnov, Course of Higher Mathematics, Vol. III, Part 2, Pergamon,
Oxford, 1964.
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In the case of equation (a.1) we have

P = t2 + 2n; Q = −2t, Z =
1

2tn+1
e−t2/4, V =

1

tn
ext−t2/4,

so that its solution is

y =

∫
exp

(
xt− t2

4

)
dt

tn+1
. (a.2)

For physical applications we need only consider values n > −1/2. For
these values the contour of integration can be taken as C1 or C2 (Fig. 12);
these satisfy the required conditions22) , since the function V vanishes at
their ends (t = +∞ or t = −∞).

Let us find the values of the parameter n for which equation (a.1) has
solutions finite for all finite x, which tend to infinity, as x→ ±∞, not more
rapidly than every finite power of x. First, we consider non-integral values of
n. The integrals (a.2) along C1 and C2 then give two independent solutions
of equation (a.1). We transform the integral along C1 by introducing the
variable u such that t = 2(x− u). Omitting a constant factor, we find

y = ex
2

∫
C′

1

e−u2

(u− x)n+1
du, (a.3)

where the integration is taken over the contour C ′
1 in the complex plane of

u, as shown in Fig. 13.

C2

C1

t

FIG. 52

xC ′
2

x
C ′

1

u

FIG. 53

As x → +∞, the whole path of integration C ′
1 moves to infinity, and

the integral in (a.3) tends to zero as e−x2 . As x → −∞, however, the path
22) These paths will not serve for negative integral n, since the integral (a.2) along them

then vanishes identically.
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of integration extends along the whole of the real axis, and the integral in
(a.3) does not tend exponentially to zero, so that the function y(x) becomes
infinite essentially as ex

2 Similarly, it is easy to see that the integral (a.2)
along the contour C2 diverges exponentially as x→ +∞.

For positive integral n (including zero), on the other hand, the integrals
along the straight parts of the path of integration cancel, and the two integrals
(a.3), along C ′

1 and C ′
2, reduce to an integral along a closed path round the

point u = x. Thus we have the solution

y(x) = ex
2

∮
e−u2

(u− x)n+1
du,

which satisfies the conditions stated. According to Cauchy’s well-known for-
mula for the derivatives of an analytic function,

f (n)(x) =
n!

2πi

∮
f(t)

(t− x)n+1
dt,

y(x) is, apart from a constant factor, an Hermite polynomial:

Hn(x) = (−1)nex
2 dn

dxn
e−x2

. (a.4)

The polynomial Hn, expanded in decreasing powers of x, has the open
form

Hn(x) = (2x)n − n(n− 1)

1
(2x)n−2 +

n(n− 1)(n− 2)(n− 3)

1 · 2
(2x)n−4 − . . .

(a.5)
It contains only powers of x which are of the same parity as n. We may write
out here the first few Hermite polynomials:

H0 = 1, H1 = 2x,H2 = 4x2−2, H3 = 8x3−12x,H4 = 16x4−48x2+12. (a.6)

To calculate the normalization integral, we replace e−xHn by its expres-
sion in (a.4) and integrate n times by parts:∫ +∞

−∞
e−x2

H2
n(x)dx =

∫ +∞

−∞
(−1)nHn(x)

dn

dxn
e−x2

dx =

∫ ∞

−∞
e−x2 dnHn

dxn
dx.

But dnHn/dx
n is a constant, 2nn!. Thus∫ +∞

−∞
e−x2

H2
n(x)dx = 2nn!

√
π. (a.7)
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§ b. The Airy function

The equation
y′′ − xy = 0 (b.1)

is of Laplace’s type (see §a). Following the general method, we form the
functions

P = t2, Q = −1, Z = − exp(−t3/3), V = exp(xt− t3/3),

so that the solution can be represented in the form

y(x) = const ·
∫
C

exp(xt− t3/3)dt, (b.2)

The path of integration C must be chosen so that the function V vanishes
at both ends of it. These ends must therefore go to infinity in the regions of

π
3

π
3

C

π
4

C1

C3

A

B

II

I

III

FIG.54

the complex plane of t in which Re(t3) >
0 (the shaded regions in Fig. 14).

A solution finite for all x is obtained
by taking the path C as shown in the fig-
ure. It can be displaced in any manner
provided that the ends of it go to infin-
ity in the same two shaded sectors (I and
III in Fig. 14). We notice that, by tak-
ing a path which lay in sectors III and II
(say), we should obtain a solution which
becomes infinite as x→ ∞.

Deforming the path C so that it goes
along the imaginary axis, we obtain the
function (b.2) in the form (substituting
t = iu)

Φ(x) =
1√
x

∫ ∞

0

cos

(
ux+

u3

3

)
du.

(b.3)
The constant in (b.2) has been put equal to −i/2

√
π, and we have denoted

the function thus obtained by Φ(x); it is called the Airy function.23)
23) We follow the definition proposed by V. A. Fok; see G. D. Yakovleva, Tablitsy funktsiǐ

Eriǐ (Tables of Airy Functions), Nauka. Moscow, 1969. The function Φ(x) is one of two
defined by Fok, who denotes it by V (x). In the literature, another definition of the Airy
function is also found, which differs from (b.3) by a constant factor: Ai(x) = Φ(x)/

√
π.
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The asymptotic expression for Φ(x) for large values of x is obtained by
calculating the integral (b.2) by the saddle-point method. For x > 0, the
exponent in the integrand has an extremum for t = ±

√
x, and the “direc-

tion of steepest descent” of the integrand is parallel to the imaginary axis.
Accordingly, to obtain the asymptotic expression for large positive x, we ex-
pand the exponent in powers of t+

√
x and integrate along the line C1 (Fig.

14, which is parallel to the imaginary axis; the distance OA =
√
x. Making

the substitution t = −
√
x+ iu, we have

Φ(x) ≈ 1

2
√
π

∫ +∞

−∞
exp

(
−2

3
x3/2 −

√
xu2
)
du,

whence
Φ(x) ≈ 1

2x1/4
exp

(
−2

3
x3/2

)
. (b.4)

Thus, for large positive x, the function Φ(x) diminishes exponentially.
To obtain the asymptotic expression for large negative values of x, we

notice that, for x < 0, the exponent has an extremum for t = i
√
|x| and

t = −i
√
|x|, and the direction of steepest descent at these points is along

lines at angles −π/4 and π/4 respectively to the real axis. Taking as the
path of integration the broken line C3 (the distance OB =

√
|x|), we have,

after some simple transformations,

Φ(x) =
1

|x|1/4
sin

(
2

3
|x|3/2 + π

4

)
. (b.5)

Thus, in the region of large negative x, the function Φ(x) is oscillatory. We
may mention that the first (and highest) maximum of the function Φ(x) is
Φ(1.02) = 0.95.

The Airy function can be expressed in terms of Bessel functions of order
1/3. The equation (b.1), as can easily be seen, has the solution

√
xZ1/3

(
2

3
x3/2

)
,

where Z1/3(x) is any solution of Bessel’s equation of order 1/3. The solution
which is the same as (b.3) is

Φ(x) =

√
πx

3

[
I−1/3

(
2

3
x3/2 − I1/3

(
2

3
x3/2

))]
≡
√

x

3π
K1/3

(
2

3
x3/2

)
for x > 0,

Φ(x) =

√
π|x|
3

[
J−1/3

(
2

3
|x|3/2

)
+ J1/3

(
2

3
|x|3/2

)]
for x < 0,

(b.6)
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where
Iν(x) = i−νJν(ix), Kν(x) =

π

2 sin νπ
[I−ν(x)− Iν(x)] .

Using the recurrence relations

Kν−1(x)−Kν+1(x) = −2ν

x
Kν(x),

2K ′
ν(x) = −Kν−1(x)−Kν+1(x)

we easily find for the derivative of the Airy function

−8 −6 −4 −2 0 2 4
−1.0
−0.8

−0.4

0

0.4

0.8
1.0
Φ(x)

x

FIG.55

Φ′(x) = − x√
3π
K2/3

(
2

3
x3/2

)
for x > 0. (b.7)

When x = 0,

Φ(0) =

√
π

32/3Γ(2/3)
= 0.629,

Φ′(0) =
31/6Γ(2/3)

2
√
π

= −0.459.

(b.8)

Figure. 15 shows a graph of the Airy function.

§ c. Legendre polynomials24)

The Legendre polynomials Pl(cos θ) are defined by the formula

Pl(cos θ) =
1

2ll!

dl

(d cos θ)l
(cos2 θ − 1)l. (c.1)

They satisfy the differential equation

1

sin θ

d

dθ

(
sin θ

dPl

dθ

)
+ l(l + 1)Pl = 0. (c.2)

The associated Legendre polynomials are defined by

Pm
l (cos θ) = sinm θ

dmPl(cos θ)

(d cos θ)m
=

1

2ll!
sinm θ

dl+m

(d cos θ)l+m
(cos2 θ − 1)l (c.3)

24) There are in the mathematical literature many good accounts of the theory of spher-
ical harmonics. Here we shall give, for reference, only a few basic relations, and make no
attempt at a systematic discussion of the theory of these functions.
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or, equivalently,

Pm
l (cos θ) = (−1)m

(l +m)!

(l −m)!2ll!
sin−m θ

dl−m

(d cos θ)l−m
(cos2 θ − 1)l, (c.4)

with m = 0, 1, . . . , l. The associated polynomials satisfy the equation

1

sin θ

d

dθ

(
sin θ

dPm
l

dθ

)
+

[
l(l + 1)− m2

sin2 θ

]
Pm
l = 0. (c.5)

The normalization integral
∫ 1

−1
[Pl(µ)]

2 dµ(µ = cos θ) for the Legendre
polynomials is calculated by substituting (c.1) and integrating l times by
parts, which gives

(−1)l

22l(l!)2

∫ 1

−1

(µ2 − 1)l
d2l

dµ2l
(µ2 − 1)ldµ =

(2l)!

22l(l!)2

∫ 1

−1

(1− µ2)ldµ.

Substitution of u = (1µ)/2 reduces this integral to Euler’s beta function, and
the result is ∫ 1

−1

[Pl(µ)]
2dµ =

2

2l + 1
. (c.6)

Similarly, it is easily seen that the functions Pl(µ) with different l are orthog-
onal: ∫ 1

−1

Pl(µ)Pl′(µ)dµ = 0, l ̸= l′. (c.7)

The calculation of the normalization integral for the associated Legendre
polynomials is easily effected by a similar method. We write [Pm

l (µ)]2 as a
product of the expressions (c.3) and (c.4), and integrate lm times by parts;
the result is ∫ 1

−1

[Pm
l (µ)]2dµ =

2

2l + 1

(l +m)!

(l −m)!
. (c.8)

It is also easily seen that the functions Pm
l with different l (and the same m)

are orthogonal: ∫ 1

−1

Pm
l (µ)Pm

l′ (µ)dµ = 0, l ̸= l′. (c.9)

The calculation of the integrals of products of three Legendre polynomials
is discussed in §107.

The following addition theorem holds for Legendre polynomials. Let γ
be the angle between two directions defined by the spherical angles θ, φ and
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θ′, φ′ : cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). Then

Pl(cos γ) = Pl(cos θ)Pl(cos θ
′)+

+
l∑

m−1

2
(l −m)!

(l +m)!
Pm
l (cos θ)Pm

l (cos θ′) cos[m(φ− φ′)]. (c.10)

This theorem can also be written in terms of the spherical harmonic functions
defined by (28.7):

Pl(nn
′) =

4π

2l + 1

l∑
m=−1

Y ∗
lm(n

′)Ylm(n). (c.11)

Here n and n′ are two unit vectors, and Ylm(n) denotes the spherical
harmonic function of the polar angle and azimuth of the direction of n relative
to a fixed system of coordinates.

If equation (c.10) is multiplied by Pl′(cos θ) and integrated over do =
sin θdθdφ, the integration with respect to φ gives zero for all terms on the
right that contain factors cos[m(φ− φ′)]; using (c.6) and (c.7), we obtain∫

Pl(cos γ)Pl′(cos θ)do = δll′
4π

2l + 1
Pl(cos θ

′).

This result may be written in the symmetrical form∫
Pl(n1n2)Pl′(n1n3)do1 = δll′

4π

2l + 1
Pl(n2n3), (c.12)

where n1,n2,n3 are three unit vectors and the integration is with respect
to the direction of n1.

Finally, we give the first few normalized spherical harmonics Ylm:

Y00 =
1√
4π
, Y10 = i

√
3

4π
cos θ, Y1,±1 = ±i

√
3

8π
sin θ · e±iφ,

Y20 =

√
5

16π
(1− 3 cos2 θ), Y2,±1 = ±

√
15

8π
cos θ sin θ · e+iφ,

Y2,±2 = −
√

15

32π
sin2 θ · e±2iφ, Y30 = −i

√
7

16π
cos θ(5 cos2 θ − 3),

Y3,±1 = ±i

√
21

64π
sin θ(5 cos2 θ − 1)e±iφ,

Y3,±2 = −i

√
105

32π
cos θ sin2 θ · e±2iφ, Y3,±3 = ±i

√
35

64π
sin3 θ · e±3iφ.
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§ d. The confluent hypergeometric function

The confluent hypergeometric function is defined by the series

F (α, γ, z) = 1 +
α

γ

z

1!
+
α(α + 1)

γ(γ + 1)

z2

2!
+ . . . , (d.1)

which converges for all finite z; the parameter α is arbitrary, while the pa-
rameter γ is supposed not zero or a negative integer. If α is a negative integer
(or zero), F (α, γ, z) reduces to a polynomial of degree |α|.

The function F (α, γ, z) satisfies the differential equation

zu′′ + (γ − z)u′ − αu = 0, (d.2)

as is easily seen by direct verification.25) By the substitution u = z1−γu1,
this equation is transformed into another of the same form,

zu′′1 + (2− γ − z)u′1 − (α− γ + 1)u1 = 0. (d.3)

Hence we see that, for non-integral γ, equation (d.2) has also the particular
integral z1−γF (α− γ +1, 2− γ, z), which is linearly independent of (d.1), so
that the general solution of equation (d.2) is of the form

u = c1F (α, γ, z) + c2z
1−γF (α− γ + 1, 2− γ, z). (d.4)

The second term, unlike the first, has a singular point at z = 0.
Equation (d.2) is of Laplace’s type, and its solutions can be represented

as contour integrals. Following the general method, we form the functions

P (t) = γt− α, Q(t) = t(t− 1), Z(t) = tα−1(t− 1)γ−α−1,

so that
u =

∫
etztα−1(t− 1)γ−α−1dt. (d.5)

The path of integration must be chosen so that the function V (t) = etztα(t−
1)γ−α returns to its original value on traversing the path. Applying the same
method to equation (d.3), we can obtain for u a contour integral of another
form:

u = z1−γ

∫
etztα−γ(t− 1)−αdt.

25) The equation (d.2) with a negative integral γ does not require special discussion,
since it can be reduced to a case of positive integral γ by the transformation which gives
equation (d.3).
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The substitution tz → t reduces this integral to the convenient form

u(z) =

∫
et(t− z)−αtα−γdt, (d.6)

and the corresponding function V to

V (t) = et(t− z)−αtα−γdt,

The integrand in (d.6) has in general two singular points, at t = z and t =
0. We take a contour of integration C which passes from infinity (Ret→ −∞)

t = 0

t = Z

C1

C2

C

FIG. 56

round the two singular points in the
positive direction and back to infinity
(Fig. 16). This contour satisfies the re-
quired conditions, since V (t) vanishes at
its ends. The integral (d.6), taken along
the contour C, has no singular point for
z = 0; hence it must be the same, apart
from a constant factor, as the function
F (α, γ, z), which also has no singularity.
For z = 0 the two singular points of the

integrand coincide; according to a well-known formula in the theory of the
gamma function,

1

2πi

∫
C

ett−γdt =
1

Γ(γ)
. (d.7)

Since F (α, γ, 0) = 1, it is evident that

F (α, γ, z) =
Γ(γ)

2πi

∫
C

et(t− z)−αtα−γdt. (d.8)

The integrand in (d.5) has singular points at t = 0 and t = 1.
If Re(γ − α) > 0, and γ is not a positive integer, the path of integration
can be taken as a contour C ′ starting from the point t = 1, passing round
the point t = 0 in the positive direction, and returning to t = 1 (Fig. 17);
for Re(γ − α) > 0, the function V (t) returns to its original value of zero
on passing round such a contour.26) The integral thus defined again has no
singularity for z = 0, and is related to F (α, γ, z) by

F (α, γ, z) = − 1

2πi

Γ(1− α)Γ(γ)

Γ(γ − α)

∮
C′
etz(−t)α−1(1− t)γ−α−1dt. (d.9)

26) If γ is a positive integer, C ′ can be any contour which passes round both the points
t = 0 and t = 1
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t = 0

t = 1

C′

FIG. 57

The following remark should be made con-
cerning the integrals (d.8), (d.9). For non-
integral α and γ, the integrands are not one-
valued functions. Their values at each point
are supposed chosen in accordance with the
condition that the complex quantity which is
raised to a power is taken with the argument whose absolute value is least.

We may notice the useful relation

F (α, γ, z) = ezF (γ − α, γ,−z), (d.10)

which is obtained at once by substituting t→ t+ z in the integral (d.8).
We have already remarked that, if α = −n, where n is a positive integer,

the function F (α, γ, z) reduces to a polynomial. A concise formula can be
obtained for these polynomials. Making in the integral (d.9) the substitution
t → 1 − (t/z) and applying Cauchy’s formula to the resulting integral, we
find

F (−n, γ, z) = 1

γ(γ + 1) . . . (γ + n− 1)
z1−γez

dm

dzn
(e−zzγ+n−1). (d.11)

If also γ = a positive integer m, we have the formula

F (−n,m, z) = (−1)m−1

m(m+ 1) . . . (m+ n− 1)
ez

dm+n−1

dzm+n−1 (e
−zzn). (d.12)

This formula is obtained by applying Cauchy’s formula to the integral derived
from (d.8) by the substitution t→ z − t.

The polynomials F (−n,m, z), 0 ⩽ m ⩽ n, are (apart from a constant
factor) the generalized Laguerre polynomials

Lm
n (z) = (−1)m

(n!)2

m!(n−m)!
F (−(n−m),m+ 1, z) =

=
n!

(n−m)!
ez

dn

dzn
e−zzn−m = (−1)m

n!

(n−m)!
ezz−m dn−m

dzn−m e−zzn. (d.13)

The polynomials Lm
n for m = 0 are denoted by Ln(z) and are called simply

Laguerre polynomials; from (d.13) we have

Ln)z = ez
dn

dzn
(e−zzn).

The integral representation (d.8) is convenient for obtaining the asymp-
totic expansion of the confluent hypergeometric function for large z. We
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deform the contour into two contours C1 and C2 (Fig. 56), which pass round
the points t = 0 and t = z respectively; the lower branch of C2 and the up-
per branch of C1 are supposed to join at infinity. To obtain an expansion in
inverse powers of z, we take (−z)−α outside the parenthesis in the integrand.
In the integral along the contour C2, we make the substitution t → t + z;
the contour C2 is thereby transformed into C1 We thus represent the formula
(d.8) as

F (α, γ, z) =
Γ(γ)

Γ(γ − α)
(−z)−αG(α, α− γ + 1,−z)+

+
Γ(γ)

Γ(α)
ezzα−γG(γ − α, 1− α, z), (d.14)

where

G(α, β, z) =
Γ(1− β)

2πi

∫
C1

(
1 +

t

z

)−α

tβ−1etdt. (d.15)

In raising −z and z to powers in the formula (d.14) we must take the argu-
ments which have the smallest absolute value. Finally, expanding (1+t/z)−α

in the integrand in powers of t/z and applying formula (d.7), we have for
G(α, β, z) the asymptotic series

G(α, β, z) = 1 +
αβ

1!z
+
α(α + 1)β(β + 1)

2!z2
+ . . . (d.16)

Formulae (d.14) and (d.16) give the asymptotic expansion of the function
F (α, γ, z).

For positive integral γ, the second term in the general solution (d.4) of
equation (d.2) is either the same as the first term (if γ = 1) or meaningless
(if γ > 1). In this case we can take, as a set of two linearly independent
solutions, the two terms in formula (d.14), i.e. the integrals (d.8) taken
along the contours C1 and C2 (these contours, like C, satisfy the required
conditions, so that the integrals along them are solutions of equation (d.2)).
The asymptotic form of these solutions is given by the formulae already
obtained; it remains for us to find their expansion in ascending powers of z.
To do this, we start from equation (d.14) and the analogous equation for the
function z1−γF (α − γ + 1, 2 − γ, z). From these two equations we express
G(α, α − γ + 1,−z) in terms of F (α, γ, z) and F (α − γ + 1, 2 − γ, z); we
then put γ = p + ε(p being a positive integer), and pass to the limit ε → 0,
resolving the indeterminacy by L’Hospital’s rule. A fairly lengthy calculation



Chap. MATHEMATICAL APPENDICES 233

gives the following expansion:

G(α, α− p+ 1,−z) = sinπα · Γ(p− a)

πΓ(p)
zα×

×

{
ln z · F (α, p, z) +

∞∑
s=0

Γ(p)Γ(α + s) [ψ(α + s)− ψ(p+ s)− ψ(s+ 1)]

Γ(α)Γ(s+ p)Γ(s+ 1)
zs+

+

p−1∑
s=1

(−1)s+1Γ(s)Γ(α− s)Γ(p)

Γ(α)Γ(p− s)
z−s

}
, (d.17)

where ψ denotes the logarithmic derivative of the gamma function: ψ(α =
Γ′(α)/Γ(α).

§ e. The hypergeometric function

The hypergeometric function is defined in the circle |z| < 1 by the series

F (α, β, γ, z) = 1 +
αβ

γ

z

1!
+
α(α + 1)β(β + 1)

γ(γ + 1)

z2

2!
+ . . . , (e.1)

and for |z| > 1 it is obtained by analytical continuation of this series (see
(e.6)). The hypergeometric function is a particular integral of the differential
equation

z(1− z)u′′ + [γ − (α + β + 1)z]u′ − αβu = 0. (e.2)
The parameters α and β are arbitrary, while ̸= 0,−1,−2, . . . The function
F (α, β, γ, z) is evidently symmetrical with respect to the parameters α and
β.27) The second independent solution of equation (e.2) is

z1−γF (β − γ + 1, α− γ + 1, 2− γ, z);

it has a singular point at z = 0.
We shall give here for reference a number of relations obeyed by the

hypergeometric function.
27) The confluent hypergeometric function is obtained from F (α, β, γ, z) by taking the

limit
F (α, γ, z) = lim

β→∞
F (α, β, γ,

z

β
)

The notation2F1(α, β, γ, z) for the hypergeometric function and 1F1(α, γ, z) for the con-
fluent hypergeometric function is also used in the literature. The subscripts to the left
and right of F show the numbers of parameters in the numerators and denominators
respectively of the terms in the series.
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The function F (α, β, γ, z) can be represented for all z, if Re() > 0, as an
integral:

F (α, β, γ, z) =

= − 1

2πi

Γ(1− α)Γ(γ)

Γ(γ − α)

∮
C′
(−t)α−1(1− t)γ−α−1(1− tz)−βdt, (e.3)

taken along the contour C ′ shown in Fig. 17. That this integral in fact
satisfies equation (e.2) is easily seen by direct substitution; the constant
factor is chosen so as to give unity for z = 0.

The substitution u = (1 − z)γ−α−βu1 in equation (e.2) leads to an equa-
tion of the same form, with parameters γ − α, γ − β, γ in place of α, β, γ
respectively. Hence we have

F (α, β, γ, z) = (1− z)γ−α−βF (γ − α, γ − β, γ, z) (e.4)
both sides of this equation satisfy the same equation, and they have the same
value for z = 0.

The substitution t → t/(1 − z + zt) in the integral (e.3) leads to the
following relation between hypergeometric functions with variables z and
z/(z1):

F (α, β, γ, z) = (1− z)−αF

(
α, γ − β, γ,

z

z − 1

)
. (e.5)

The value of the many-valued expression (1 − z)−α in this formula (and
of similar expressions in all the following formulae) is determined by the
condition that the complex quantity which is raised to a power is taken with
the argument whose absolute value is least.

Next we shall give, without proof, an important formula relating hyper-
geometric functions with variables z and 1/z:

F (α, β, γ, z) =
Γ(γ)Γ(β − α)

Γ(β)Γ(γ − α)
(−z)−αF

(
α, α + 1− γ, α + 1− β,

1

z

)
+

+
Γ(γ)Γ(α− β)

Γ(α)Γ(γ − β)
(−z)−βF

(
β, β + 1− γ, β + 1− α,

1

z

)
. (e.6)

This formula expresses F (α, β, γ, z) as a series which converges for |z| > 1,
i.e. it is the analytical continuation of the original series (e.1).

The formula

F (α, β, γ, z) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
F (α, β, α + β + 1− γ, 1− z)+

+
Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
(1− z)γ−α−βF (γ − α, γ − β, γ + 1− α− β, 1− z).

(e.7)
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relates hypergeometric functions of z and 1− z; again, the proof will not be
given here. Combining (e.7) with (e.6), we obtain the relations

F (α, β, γ, z) =
Γ(γ)Γ(β − α)

Γ(β)Γ(γ − α)
(1− z)−αF

(
α, γ − β, α + 1− β,

1

1− z

)
+

+
Γ(γ)Γ(α− β)

Γ(α)Γ(γ − β)
(1− z)−βF (β, γ − α, β + 1− α,

1

1− z
), (e.8)

F (α, β, γ, z) =
Γ(γ)Γ(γ − α− β)

Γ(γ − β)Γ(γ − α)
×

× z−αF

(
α, α + 1− γ, α + β + 1− γ,

z − 1

z

)
+

Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
×

× (1− z)γ−α−βzβ−γF

(
1− β, γ − β, γ + 1− α− β,

z − 1

z

)
. (e.9)

Each of the terms in the sums on the right of equations (e.6)–(e.9) is itself a
solution of the hypergeometric equation.

If α (or β) is a negative integer or zero, α = −n, the hypergeometric
function reduces to a polynomial of the nth degree, and can be represented
in the form

F (−n, β, γ, z) = z1−γ(1− z)γ+n−β

γ(γ + 1) . . . (γ + n− 1)

dn

dzn
[
zγ+n−1(1− z)β−γ

]
. (e.10)

These polynomials are the same, apart from a constant factor, as the Jacobi
polynomials, defined by

P (a,b)
n (z) =

(a+ 1)(a+ 2) . . . (a+ n)

n!
F

(
−n, a+ b+ n+ 1, a+ 1,

1− z

2

)
=

=
(−1)n

2nn!
(1− z)−a(1 + z)−b d

n

dzn
[
(1− z)a+n(1 + z)b+n

]
. (e.11)

For a = b = 0, the Jacobi polynomials are the Legendre polynomials. For
n = 0, P (a,b)

0 = 1.

§ f. The calculation of integrals containing confluent
hypergeometric functions

Let us consider an integral of the form

Jν
αγ =

∫ ∞

0

e−λzzνF (α, γ, kz)dz. (f.1)
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We assume that it converges. If this is so we must have Reν > −1 and
Reλ > |Rek|; if α is a negative integer, the latter condition can be replaced
by Reλ > 0. Using for F (α, γ, kz) the integral representation (d.9) and
effecting the integration over z under the contour integral, we have

Jν
αγ = − 1

2πi

Γ(1− α)Γ(γ)

Γ(γ − α)
λ−ν−1Γ(ν + 1)×

×
∮
C′
(−t)α−1(1− t)γ−α−1(1− (k/λ)t)−ν−1dt.

Using (e.3), we have finally

Jν
αγ = Γ(ν + 1)λ−ν−1F (α, ν + 1, γ, k/λ). (f.2)

In the cases where the function F (α, ν + 1, γ, k/λ) reduces to a polynomial,
we have for the integral Jν

αγ an expression in terms of elementary functions:

Jγ+n−1
αγ = (−1)nΓ(γ)

dn

dλn
[
λα−γ(λ− k)−α

]
, (f.3)

Jν
−nγ = (−1)n

Γ(ν + 1)(λ+ k)γ+n−ν−1

γ(γ + 1) . . . (γ + n− 1)

dn

dλn
[
λ−ν−1(λ− k)ν−γ+1

]
, (f.4)

Jn
αm =

(−1)m−n

km−1(1− α)(2− α) . . . (m− 1− α)
×

×
{
−(m− 1)!

dn

dλn
[
λα−1(λ− k)m−α−1

]
+

+ n!(m− n− 1) . . . (m− 1)λα−n−1(λ− k)−1+m−n−α×

× dm−n−2

dλm−n−2

[
λm−α−1(λ− k)α−1

]}
; (f.5)

here m,n are integers, with 0 ⩽ n ⩽ m− 2.
Next, let us calculate the integral

Jν =

∫ ∞

0

e−kzzν−1 [F (−n, γ, kz)]2 dz, (f.6)

where n is an integer and Re v > 0. To calculate this, we begin with a more
general integral having e−λz instead of e−ks in the integrand. We write one
of the functions F (−n, γ, kz) as a contour integral (d.9), and then integrate
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over z, using formula (f.3):

∫ ∞

0

= e−λzzν−1 [F (−n, γ, kz)]2 dz = − 1

2πi
(−1)n

Γ(1 + n)Γ2(γ)Γ(ν)

Γ2(γ + n)
×

×
∮
C′
(λ− kt− k)γ+n−ν(−t)−n−1(1− t)γ+n−1×

× dn

dλn
[
(λ− kt)−ν(λ− kt− k)ν−γ

]
dt.

The nth derivative with respect to λ can evidently be replaced by a derivative
of the same order with respect to t; we then put λ = k, and thereby return
to the integral Jν :

Jν = − 1

2πi

Γ(n+ 1)Γ(ν)Γ2(γ)

Γ2(γ + n)kν
×

×
∮
C′
(−t)γ−ν−1(1− t)γ+n−1 d

n

dtn
[
(1− t)−ν(−t)ν−γ

]
dt.

By integrating n times by parts, we transfer the operator dn/dtn to the
expression (−t)γ−ν−1(1− t)γ+n−1, and then expand the derivative by Leibniz’
formula. As a result, we obtain a sum of integrals, each of which reduces to
Euler’s well-known integral. We finally have the following expression for the
integral required:

Jν =
Γ(ν)n!

kνγ(γ + 1) . . . (γ + n− 1)
×

×

{
1 +

n−1∑
s=0

n(n− 1) . . . (n− s)(γ − ν − s− 1)(γ − ν − s) . . . (γ − ν + s)

[(s+ 1)!]2γ(γ + 1) . . . (γ + s)

}
.

(f.7)

It is easy to see that the integrals Jν are related by

Jγ+p =
(γ − p− 1)(γ − p) . . . (γ + p− 1)

k2p+1
Jγ−1−p, (f.8)

where p is any integer.
We similarly calculate the integral

J =

∫ ∞

0

e−λzzγ−1F (α, γ, kz)F (α′, γ, k′z)dz. (f.9)
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We represent the function F (α′, γ, k′z) as a contour integral (d.9), and inte-
grate over z, using formula (f.3) with n = 0:

J = − 1

2πi

Γ(1− α′)Γ2(γ)

Γ(γ − α′)

∮
C′
(−t)α′−1(1− t)γ−α′−1(λ− k′t)α−γ×

× (λ− k′t− k)−αdt.

By the substitution t→ λt/(k′t+ λ− k′), this integral is brought to the
form (e.3), giving

J = Γ(γ)λα+α′−γ(λ− k)−α(λ− k′)−α′
F

(
α, α′, γ,

kk′

(λ− k)(λ− k′)

)
. (f.10)

If α (or α′) is a negative integer, α = −n, this expression can be rewritten,
using (e.7), as

J =
Γ2(γ)Γ(γ + n− α′)

Γ(γ + n)Γ(γ − α′)
λ−n+α′−γ(λ− k)n(λ− k′)−α′×

× F (−n, α′,−n+ α′ + 1− γ,
λ(λ− k − k′)

(λ− k)(λ− k′)
). (f.11)

Finally, let us consider integrals of the form

Jsp
ν (α, α′) =

∫ ∞

0

exp

(
−k + k′

2
z

)
zγ−1+sF (α, γ, kz)F (α′, γ − p, k′z)dz.

(f.12)
The values of the parameters are supposed such that the integral converges
absolutely; s and p are positive integers. The simplest of these integrals,
J00
γ (α, α′), is by (f.10),

J00
ν (α, α′) = 2γΓ(γ)(k + k′)α+α′−γ(k′ − k)−α×

× (k − k′)−α′
F

(
α, α′, γ,− 4kk′

(k′ − k)2

)
, (f.13)

if α (or α′) is a negative integer, α = −n, we can also write, by (f.11),

J00
γ (−n, α′) = 2γ

Γ(γ)(γ − α′)(γ − α′ + 1) . . . (γ − α′ + n− 1)

γ(γ + 1) . . . (γ + n− 1)
×

× (−1)n(k + k′)−n+α′−γ(k − k′)n−α′×

× F

[
−n, α′, α′ + 1− n− γ,

(
k + k′

k − k′

)2
]
. (f.14)
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The general formula for Jsp
γ (α, α′) can be derived, but it is so complex that

it cannot be used conveniently. It is more convenient to use recurrence for-
mulae, which enable us to reduce the integrals Jsp

γ (α, α′) to the integral with
s = p = 0. The formula

Jsp
γ (α, α′) =

γ − 1

k
{Js,p−1

γ−1 (α, α′)− Js,p−1
γ−1 (α− 1, α′)} (f.15)

enables us to reduce Jsp
γ (α, α′) to the integral with p = 0. The formula

Js+1,0
γ (α, α′) =

4

k2 − k′2
{[γ(k − k′)/2− kα + k′α− k′s]Js0

γ (α, α′)+

+ s(γ − 1 + s− 2α′)Js−1,0
γ (α, α′) + 2α′sJs−1,0

γ (α, α + 1)} (f.16)

then makes possible the final reduction to the integral with s = p = 0.28)

28) See W. Gordon, Annalen der Physik [5] 2, 1031, 1929.
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